
MANDO-HGT: Heterogeneous Graph Transformers
for Smart Contract Vulnerability Detection

Hoang H. Nguyen∗
L3S Research Center

Leibniz Universität Hannover
Hannover, Germany

ehoang@l3s.de

Nhat-Minh Nguyen∗
Singapore Management University

Singapore
nmnguyen@smu.edu.sg

Chunyao Xie
L3S Research Center

Leibniz Universität Hannover
Hannover, Germany

xie@l3s.de

Zahra Ahmadi
L3S Research Center

Leibniz Universität Hannover
Hannover, Germany

ahmadi@l3s.de

Daniel Kudendo
L3S Research Center

Leibniz Universität Hannover
Hannover, Germany

kudenko@l3s.de

Thanh-Nam Doan
Independent Researcher
Atlanta, Georgia, USA

me@tndoan.com

Lingxiao Jiang
Singapore Management University

Singapore
lxjiang@smu.edu.sg

Abstract—Smart contracts in blockchains have been increas-
ingly used for high-value business applications. It is essential to
check smart contracts’ reliability before and after deployment.
Although various program analysis and deep learning techniques
have been proposed to detect vulnerabilities in either Ethereum
smart contract source code or bytecode, their detection accuracy
and scalability are still limited. This paper presents a novel
framework named MANDO-HGT for detecting smart contract
vulnerabilities. Given Ethereum smart contracts, either in source
code or bytecode form, and vulnerable or clean, MANDO-
HGT custom-builds heterogeneous contract graphs (HCGs) to
represent control-flow and/or function-call information of the
code. It then adapts heterogeneous graph transformers (HGTs)
with customized meta relations for graph nodes and edges to
learn their embeddings and train classifiers for detecting various
vulnerability types in the nodes and graphs of the contracts
more accurately. We have collected more than 55K Ethereum
smart contracts from various data sources and verified the
labels for 423 buggy and 2,742 clean contracts to evaluate
MANDO-HGT. Our empirical results show that MANDO-HGT
can significantly improve the detection accuracy of other state-
of-the-art vulnerability detection techniques that are based on
either machine learning or conventional analysis techniques. The
accuracy improvements in terms of F1-score range from 0.7%
to more than 76% at either the coarse-grained contract level
or the fine-grained line level for various vulnerability types in
either source code or bytecode. Our method is general and can
be retrained easily for different vulnerability types without the
need for manually defined vulnerability patterns.

Index Terms—vulnerability detection, smart contracts, source

Acknowledgments. This work was supported by the European Union’s
Horizon 2020 research and innovation program under grant agreement No.
833635 (project ROXANNE: Real-time network, text, and speaker analytics
for combating organized crime, 2019-2022) and by the Singapore Ministry
of Education (MOE) Academic Research Fund (AcRF) Tier 1 grant and
the Lee Kong Chian Fellowship. Any opinions, findings and conclusions, or
recommendations expressed in this material are those of the authors and do
not reflect the views of any of the grantors. We also thank all the anonymous
reviewers for their insightful feedback on our paper.

∗ The first author and the second author contributed equally to this work.
H.H.N. conceived the original idea and experimental settings and directed the
project. H.H.N. and N.M.N. developed the framework. N.M.N. performed the
experiments for the evaluation.

code, bytecode, heterogeneous graph learning, graph transformer

I. INTRODUCTION

Smart contracts on blockchain systems have been used for
many application domains [1], such as finance, e-commerce,
healthcare, logistics, and law. Any bug or security vulnerability
in a smart contract deployed in a blockchain can have devas-
tating consequences for both the developers and the users of
the smart contracts [2], [3]. Therefore, there is a high demand
for various kinds of security assurance techniques for smart
contracts, especially for vulnerability detection.

Many studies have been carried out on vulnerability detec-
tion in smart contracts based on conventional software testing,
analysis, verification techniques [4]–[11]. Such techniques
often require certain types of oracles or specifications of the
(un)expected patterns or semantics of smart contract code for
analysis. Unfortunately, specifying the patterns can take much
manual effort and make it troublesome to adapt the tools to
the evolving contract languages and types of vulnerabilities.
Also, computational complexity makes it very expensive to
repeatedly run the techniques on a large set of smart contracts
to search for new types of vulnerabilities. Hence, a new
class of vulnerability detection techniques has been proposed
based on machine learning and deep learning techniques
[12]–[17]. Such techniques aim to encode various syntactic
and semantic code information via syntax trees, control-flow
graphs, or program dependency graphs, among others, and
to train automated classifiers to distinguish vulnerable code
from normal ones. The learning-based techniques reduce the
need for manually specified patterns or specifications, easier
to be adapted to new types of code and vulnerabilities as
long as some training data is provided. However, existing
code learning techniques often treat most nodes and edges
homogeneously, ignoring fine-grained differences in the nodes
and edges types and their exact locations in the code’s trees

1

and graphs. This leads to insufficient learning accuracy, and
this limitation becomes more pronounced for smart contracts
bytecode without source code. Since the structures represent-
ing different bytecode become more similar to each other if the
types of the specific bytecode instructions are ignored, making
it harder to identify vulnerable/bug patterns 1.

Combining the advantages of previous techniques and pro-
gresses in heterogeneous graph learning [18]–[21], this paper
aims to develop a new framework for smart contract vulnera-
bility detection, applicable to both source code and bytecode.
The main idea of our framework is two-folded:
• First, we represent the contract code, either source code

or bytecode, as customized heterogeneous contract graphs
(HCGs) that represent control flows and call relations of
the code. With the combined representations, we aim to
capture the code’s syntactic and semantic information more
comprehensively to facilitate learning of code patterns and
distinguishing vulnerable code from clean ones.

• Second, we extend the heterogeneous graph transformer
(HGT) [21] techniques to learn different types of nodes and
edges of the contract graphs and encode the semantics of
the code more accurately. The encodings can then be used
to train classifiers to recognize vulnerable code.
We name our framework MANDO-HGT, following a pre-

vious work [22] that only works for source code and uses a
different graph learning technique. Our framework aims to be
more general than previous techniques, applicable for either
source code or bytecode, can be instantiated with various
graph learning techniques, and can be re-trained for new types
of vulnerabilities and detect vulnerabilities in large sets of
contracts efficiently and accurately. The general approach is
useful since it is not uncommon for smart contracts to be
deployed without their source code or for the source code to
be lost or deleted over time and the approach should be able
to handle variation in generated bytecode to some extent when
retrained with bytecode variants.

We have curated 55k Ethereum smart contracts from various
data sources, including SmartBugs [23], [24] and SolidiFI-
Benchmark [25], then verified the labels for 423 buggy and
2,742 clean contracts and evaluated MANDO-HGT on the
mixed dataset. Our evaluation shows that MANDO-HGT
significantly improves F1-score over other vulnerability de-
tection techniques: (1) Compared to other best-performing
learning-based techniques, it improves their F1-score by 0.74%
to 22.56% at the contract level and 3.51% to 7.48% at a
more fine-grained line level for various vulnerability types
in either source code or bytecode; (2) Compared to best-
performing conventional analysis-based techniques that detect
vulnerabilities at the fine-grained line level, it improves their
F1-score by 18.18% to 76.89%; Furthermore, MANDO-HGT

1In cybersecurity contexts, vulnerabilities mean special kinds of bugs
that can be exploited and cause major security concerns. According to
https://dasp.co/, all the bug types mentioned in this work can be vulnerabilities,
although indeed, only a few instances of the bug types can be exploited. In
this paper, we do not need to handle the differentiation and simply treat them
as synonyms.

can be re-trained to detect different types of vulnerabilities
without manually defining bug patterns needed by analysis-
based techniques.

We also show that, through a few case studies assisted
by recent neural network interpretation techniques [26], [27],
the detection results of MANDO-HGT are often meaningful,
reflecting our understanding of the bug patterns. We also
provide possible explanations for the failures in a few cases
where the detection results are wrong, which may guide future
improvements to learning-based techniques.

The rest of the paper is organized as follows. Section II
provides a motivating example to show the benefits of our
method. using heterogeneous graph transformers together with
heterogeneous contract graphs for smart contracts. Section III
briefly discusses our differences from related studies. Sec-
tion IV provides more details of MANDO-HGT. Section V
presents our evaluation results and a few case studies on their
interpretations. Section VI concludes with future work.

II. MOTIVATION

Motivating Sample Source Code. Figure 1 (Part A)
presents a snippet of a smart contract written in Solidity
with a reentrance vulnerability. Part B presents the call graph
(CG) of the contract, and part C presents a partial sample
control-flow graph (CFG) for the collect function of the
sample contract. Line 11. msg.sender.call, is the root
cause of the vulnerability of this sample code. collect can
be repeatedly called before balances is deducted at Line
12, allowing msg.sender to receive more values than what
is specified by _am. In order to catch this so-called reen-
trance vulnerability, the control-flow and call relations among
msg.sender, balances, and _am should be considered.

Motivating Sample Bytecode. Figure 2 shows a snippet
of a smart contract written in Solidity, together with its
runtime bytecode 2 and the control-flow graph of the bytecode.
It contains an access control vulnerability on lines 3–4 as
selfdestruct is a critical function in Ethereum, leading
to the self-destruction of the smart contract but inadequately
protected. Thus, malicious parties can destruct the contract
due to missing access controls. This vulnerability would
be represented by two node-edge-type relations in our het-
erogeneous control-flow graph as DISPATCHER

true−−−→
DISPATCHER and DISPATCHER

next−−−→ LEAF .
Objectives. Our primary objective is to automatically cap-

ture vulnerabilities in either contract source code like Figure 1
and contract bytecode like Figure 2 via our graph embedding
techniques. More specifically, our objective is to: (1) Represent
the Solidity source code or EVM bytecode as heterogeneous
call and control-flow graphs like the example flow charts;
(2) Learn the embeddings of the nodes and graphs; and
(3) Efficiently and accurately identify if a contract contains
vulnerabilities and locate them if its source code is available.

2When a contract in Solidity source code is compiled, the produced
bytecode has two types: creation bytecode is the constructor code of the
contract that performs initializations and deploys the runtime bytecode to the
blockchain; the constructor code is then discarded, not stored in blockchain.

2

Node Type:
ENTRY_POINT

Node Type:
END_IF

Node Type: EXPRESSION
Expression:

acc.balance -= _am

Node Type: IF
Expression:

msg.sender.call.value(_am)()

Node Type:
EXPRESSION
Expression:

LogFile.AddMessage(msg.sender,_
am,Collect)

Node Type:IF
Expression:

acc.balance >= MinSum && acc.balance >=
_am && now > acc.unlockTime

MY_BANK-Collect

Node Type:
END_IF

Part CPart A

1 contract MY_BANK {
2 function Put(uint _unlockTime) public payable
3 var acc = Acc[msg.sender];
4 acc.balance += msg.value;
5 acc.unlockTime = _unlockTime>now?_unlockTime:now;
6 LogFile.AddMessage(msg.sender,msg.value,"Put");}
7
8 function Collect(uint _am) public payable {
9 var acc = Acc[msg.sender];
10 if(acc.balance>=MinSum && acc.balance>=_am && now>acc.unlockTime){
11 if(msg.sender.call.value(_am)()){
12 acc.balance-=_am;
13 LogFile.AddMessage(msg.sender,_am,”Collect”);} } }
14
15 function() public payable {Put(0);}
16 struct Holder{
17 uint unlockTime;
18 uint balance;}
19 mapping (address => Holder) public Acc;
20 Log LogFile;
21 uint public MinSum = 1 ether;
22 function MY_BANK(address log) public{
23 LogFile = Log(log);} }
24
25 contract Log {
26 struct Message{address Sender; string Data; uint Val; uint Time;}
27 Message[] public History;
28 Message LastMsg;
29 function AddMessage(address _adr,uint _val,string _data) public{
30 LastMsg.Sender = _adr;
31 LastMsg.Time = now;
32 LastMsg.Val = _val;
33 LastMsg.Data = _data;

Part B

PrivateBank

fallback collect

External_Call External_Call

AddMessage

Log

MY_BANK

MY_BANK

Put

Node Type: NEW_VARIABLE
Expression:

acc = Acc[msg.sender]

Internal_Call

True edge

False edge

Next edge

NEW_VARIABLE Node

EXPRESSION Node

IF Node

END_IF Node

ENTRY_POINT Node

FUNCTION_NAME Node

FALLBACK_NODE Node

Fig. 1. A sample Ethereum smart contract MY_BANK (Part A), its call graph (CG) (Part B), and a control-flow graph (CFG) (Part C) for the function
Collect. Line 11 in Part A is the root cause of a reentrancy bug; the nodes in CG and CFG containing the reentrancy bug are highlighted with red text.

1 pragma solidity ^0.4.0;

2 contract SimpleSuicide {

3 function sudicideAnyone() {

4 selfdestruct(msg.sender);

5 }

6 }

0: PUSH1 0x80

2: PUSH1 0x40

…

9: PUSH1 0x3f

11: JUMPI

68: JUMPDEST

69: CALLVALUE

…

72: PUSH1 0x4f

74: JUMPI

86: JUMPDEST

87: STOP

63: JUMPDEST

64: PUSH1 0x00

66: DUP1

67: REVERT

79: JUMPDEST

80: POP

81: PUSH1 0x56

83: PUSH1 0x58

85: JUMP

88: JUMPDEST

89: CALLER

90: PUSH20 0xff

111: AND

112: SELFDESTRUCT

113: EXIT BLOCK

12: PUSH1 0x00

14: CALLDATALOAD

…

60: PUSH1 0x44

62: JUMPI

76: PUSH1 0x00

77: DUP1

78: REVERT

True edge

False edge

Next edge

Root block

Exit block

Dispatcher block

Leaf block

runtime bytecode:

608060405260043610603f57600035
7c0100000000000000000000000000
000000000000000000000000000000
900463ffffffff168063a56a3b5a146044
575b600080fd5b348015604f576000
80fd5b5060566058565b005b3373fff
ffffffffffffffffffffffffffffffffffff16ff00a16562
7a7a7230582068bf352f90d746bbb5
9454e32185387b941000083d7c824d
177cffb5ebec05940029

Fig. 2. Code snippet, runtime bytecode, and control-flow graph of the runtime
bytecode of a contract containing an access control bug.

III. RELATED WORK

We discuss the main differences between our work and
closely related work on smart contract bug detection.

Conventional bug detection techniques. Many studies on
vulnerability detection are based on conventional techniques,
such as testing/fuzzing [4], [28]–[31], symbolic execution
[5], [6], [32]–[35], static/dynamic program analysis [7]–[9],
[36]–[39], and formal verification [10], [11], [40]–[44]. They
often need customized implementation of the testing, analysis,
and verification algorithms for the specific smart contract
language and vulnerability types; their analysis algorithms can
be very different for source code and bytecode, limiting their
flexibility for new languages or vulnerability types. Although
our learning-based approach also requires customized front-
end code parsing and control-flow graph constructions, the
graph-learning components are independent of the languages

and can be applicable to new vulnerability types.
Learning-based bug detection techniques. There are also

many studies based on machine learning and deep learning
for detecting bugs in either source, bytecode, or binary. Some
studies consider different kinds of code representations and
learning techniques for source code in various languages [45]–
[53], but very few consider heterogeneous graph learning. A
recent study uses heterogeneous graphs for source code [54],
but it has not yet been applied to control-flow graphs of smart
contracts. Also, among the limited literature on deep learning-
based vulnerability detection methods in smart contracts byte-
code [13], [16], [55]–[60], some use control-flow and data-
flow graphs (and bytecode instruction sequences). However,
they still use homogeneous graph learning techniques, while
our approach customizes heterogeneous graph learning for
both source code and bytecode of smart contracts.

There are other general code representation learning studies
[61]–[66] that are different from ours but can potentially be
combined with ours to improve its accuracy in encoding bugs.
We leave such interesting exploration for future work.

IV. APPROACH

Our proposed framework, MANDO-HGT, consists of five
main components in the grey boxes in Figure 3: Heterogeneous
Contract Graph Generator, Meta Relations Extractor, Node
Features Extractor, MANDO-HGT Graph Neural Network,
and Two-Phase Vulnerability Detector. The five components
are explained in detail below. The input of MANDO-HGT is
either the source code or bytecode of one or more Ethereum
smart contracts, and the output is the bug predictions for the
input contracts at the contract level (for both source code and
bytecode) and the line-level (for source code only).

A. Heterogeneous Contract Graph Generator

Definition IV-A.1 (Heterogeneous Graph). A heterogeneous
graph is a directed graph G = (V,E, τ, ϕ), consisting of a

3

Fig. 3. MANDO-HGT Overview. The process flows indicated by yellow
arrows are for both the bytecode and source code of the input contracts,
while green arrows are for source code only.

vertex set V and an edge set E. τ : V → A is a node-type
mapping function and ϕ : E → R is an edge-type mapping
function. A and R denote the sets of node types and edge
types, and |A| ≥ 2 and |R| ≥ 1.

Smart contract code, either source code or bytecode, is
processed by the first component of Figure 3, Heterogeneous
Contract Graph Generator, and translated into heteroge-
neous graphs based on control-flow graphs (CFGs) and/or
call graphs (CGs). In MANDO-HGT, we use Slither [7] to
analyze source code and EtherSolve [67] to analyze bytecode
respectively, to construct basic CFGs and CGs. In contrast to
previous studies [12], [68] that only consider homogeneous
forms of control-flow graphs where types of nodes and edges
are not utilized, we retain most of the structure and semantics
of smart contract code through heterogeneous graphs that
preserve various node and edge types. In particular, we convert
basic CFGs and CGs into heterogeneous forms, called hetero-
geneous control-flow graphs and heterogeneous call graphs,
and fuse them into heterogeneous contract graphs (HCGs).

Heterogeneous Control-Flow Graphs (HCFGs). For input
bytecode, a CFG may involve all possible opcodes defined in
the Ethereum yellow paper [69], but using all the opcodes
as node types can induce much learning overhead. Based on
EtherSolve [67], we define six primary types of nodes repre-
senting important opcode blocks, including ROOT , BASIC,
DISPATCHER, FALLBACK, LEAF , and EXIT in
MANDO-HGT: ROOT and EXIT represent entry and end
blocks, respectively; DISPATCHER, FALLBACK, and
LEAF are BASIC blocks with some unique characteristics.
Specifically, a BASIC block is a sequence of opcodes ex-
ecuted sequentially between a jump destination (JUMPDEST
opcode) and a jump instruction (JUMP or JUMPI opcode).
A DISPATCHER block is a BASIC block with the last
opcode being the return or stop opcode. A FALLBACK
block is a DISPATCHER block that has no call data,
and none of the hashes matches when executed (REVERT
opcode). A LEAF block has the last opcodes being REVERT,

SELFDESTRUCT, RETURN, INVALID, and STOP and has
no successors, which means jumping to the END block in
the CFG. In addition, three edge types are used to describe
sequential (NEXT) or branching (TRUE and FALSE)
connections between nodes. Notably, the JUMPI opcode plays
a vital role in a conditional branching structure; we add the
edge type FALSE for a branch that leads to the following
opcode block when the branch condition is false, and the
TRUE edge type is for the true branch, which is the argument
of the PUSH opcode interpreted as the destination offset for
the JUMPI. Thus, a smart contract can be converted to a
heterogeneous control-flow graph (HCFG). Figure 2 shows the
generated HCFG for the runtime bytecode of a buggy contract.

For input source code, a CFG may involve many
types of statements or lines of code. We use typical
statement types as the node types for source code’s
HCFGs, such as ENTRY POINT , EXPRESSION ,
NEW V ARIABLE, RETURN , IF , END IF ,
IF LOOP , and END LOOP . Similar to bytecode,
three edge types are used to indicate statements’ sequential
or branching nature, such as NEXT , TRUE, and FALSE.
Figure 1 (Part C) shows a sample HCFG generated for the
Collect function in the MY_BANK contract.

Due to the capabilities and limitations of the tools for
generating CFGs (Slither [7] for Solidity source code and
EtherSolve [67] for EVM bytecode), a bytecode’s HCFG rep-
resents the control flows throughout an entire smart contract,
while a source code’s HCFG is only for one function of a
contract. To integrate the HCFGs for all functions of a contract,
we also utilize call graphs for source code as explained below.

Heterogeneous Call Graphs. A call graph (CG) represents
the invocation relations among functions in one or multi-
ple smart contracts. There are two basic forms of calls in
smart contracts that the MANDO-HGT framework consid-
ers: internal calls for function calls within the same con-
tract and external calls for function calls across contracts,
represented by two edge types INTERNAL CALL and
EXTERNAL CALL respectively. In addition to the typical
function node type FUNCTION NAME, we also employ
the FALLBACK NODE node type to represent fallback
functions that are executed if a function identifier to be called
does not match any accessible function in a smart contract
or if insufficient data was provided for the function call. Such
fallback functions are directly or indirectly related to numerous
Ethereum smart contract vulnerabilities [70]. Figure 1 (Part B)
shows such a heterogeneous call graph.

We also use Slither to process each smart contract source
code to produce its heterogeneous call graph and add the
explicit types to the nodes and edges.

Heterogeneous Contract Graphs (HCGs): Fusion of Het-
erogeneous Call Graphs and Heterogeneous Control-Flow
Graphs. The topologies of these two kinds of graphs for a
smart contract source code can be merged into a global graph,
to facilitate the graph learning process later. In MANDO-
HGT, the sub-component Heterogeneous Graphs Fusion is
for this purpose: for each node in the heterogeneous call

4

graph that represents a function, a bridging edge is added
to link this node to the entry node of the heterogeneous
control-flow graph for the function (as illustrated by the
double-arrow edge between Figure 1 Part B and Part C).
We call such a fused graph a heterogeneous contract graph
(HCG). For bytecode, since the heterogeneous control-flow
graph generated by EtherSolve has represented the entire smart
contract, our Heterogeneous Graphs Fusion sub-component
directly utilizes the bytecode’s HCFG as the fused HCG.

B. Meta Relations Extractor

Definition IV-B.1 (Meta Relation). A meta relation of an edge
e = (s, t) from a source node s to a target node t is indicated
as ⟨τ(s), ϕ(e), τ(t)⟩, with τ(s) and τ(t) representing the node
type of s and t, respectively, and ϕ(e) representing for the edge
type of e. A metapath can refer to a sequence of such meta
relations for a sequence of connected edges.

The component Meta Relations Extractor of MANDO-
HGT extracts customized meta relations from the generated
heterogeneous contract graphs (HCGs). The main advantage
of extracting meta relations is avoiding the explosion of all
possible node and edge types combinations in the traditional
approaches that use metapath [19], [20] as the number of node
types and edge types in the graphs is dynamic and can be up
to eighteen node types and five edge types.

We also add meta relations through reflective
connections between adjacent nodes, e.g., the
relation between two adjacent nodes of the types
EXPRESSION and END IF in Figure 1 can be
described by both ⟨EXPRESSION, next, END IF ⟩
and ⟨EXPRESSION, back,END IF ⟩. HCGs are
predominantly tree-like, with only a few back-edges
created by LOOP-related statements. Adding the reflective
relations increases the comprehensiveness of the extracted
meta-relations, and improves the stable operability of the
heterogeneous graph transformer (HGT) used in MANDO-
HGT because the original architecture of each HGT layer
requires at least two source nodes for one target node [21]
and, without reflective relations, many nodes having only one
source node (e.g., the two EXPRESSION nodes in Figure 1)
would be ignored during training.

C. Node Features Extractor

The main goal of this extractor is to generate basic node
features via one of the two following ways. (1) Generate
node embeddings via some basic graph neural network with-
out considering node and edge types. Omitting node and
edge types is often reasonable for graph classification, as
the connectivity topology among nodes is often sufficient to
differentiate the graphs. We employ either homogeneous (e.g.,
node2vec [71]) or heterogeneous (e.g., metapath2vec [19])
graph neural networks in our evaluation (Section V). (2)
Generate one-hot vectors based on the node types as the node
features. These node features were used as initial embeddings
for the MANDO-HGT’s first layer to leverage the rich

Meta Relation

of Node Type

Meta Relation

of Node Type

Node
FeaturesS1 S2

t

...

...

...

...

: Add

: Product ELU
...

Heterogeneous
Message
Passing Heterogeneous

Mutual Attention

Target-Specific
Aggregation

A Heterogeneous Graph Transformer (HGT) Layer

x L HGT
Layers

Node Embeddings
per each Node Type

Multi-Layer
Perceptron

Two-Phase
Vulnerability

Detector
...

Message Message

Attension
Attension

Edge Scaled
Softmax

Fig. 4. The architecture of the MANDO-HGT Graph Neural Network.

information independently without relying on any other neural
network.

D. MANDO-HGT Graph Neural Network
Figure 4 illustrates the architecture of the MANDO-HGT

Graph Neural Network, based on Heterogeneous Graph Trans-
former (HGT) [21]. In MANDO-HGT GNN, we feed all pairs
of meta relations of every target node, including their node
types and node features, as inputs to one HGT layer. This is
the major difference in our framework from the original HGT
GNN. Such a mechanism allows MANDO-HGT to learn the
inter-relation among our customized meta relations in HCGs. It
is important since it disentangles complex node/edge relations
for learning. The outputs of MANDO-HGT GNN are fed
into the final components Two-Phase Vulnerability Detector
to identify whether the smart contracts contain bugs and to
find the bug locations in the contract source code.

Heterogeneous Graph Transformer (HGT) layer. The
goal of this layer is to learn the attention of every pair of
meta relations between a target node t and its neighbor source
nodes s1 and s2 [21]. To achieve the goal, the architecture of
Transformer [72] is employed with the target node t as the
“Query” vector and its neighbors s1 and s2 as “Key” vectors.
The attention is the output of the softmax layer applied to
the concatenation of the output of h attention head [73]. Each
attention head explores a different relation aspect of the two
pairs of t with s1 and t with s2 by letting the embedding
vectors of t with s1 and t with s2 go through the l-th GNN
layer denoted by H(l−1)[t], H(l−1)[s1] and H(l−1)[s2] in

5

Figure 4. Specifically, there are three sub-components inside
the HGT layer: (1) Heterogeneous Mutual Attention: The sub-
component uses the Q and K linear transformations of target
node t, and the two source neighbors s1 and s2 of t as the
inputs, and the output is the attention or correlation probability
of the two node pairs, i.e., s1 or s2 with t as well as the edge
types ϕ(e1) and ϕ(e2) associated with the two given source
nodes. The matrix WATT encodes multiple semantic relations
of the pairs with the same node type. (2) Heterogeneous Mes-
sage Passing: The input in this sub-component is the V linear
transformations of the pair of source nodes s1 and s2, and the
output is the multi-head message containing the distribution
differences of nodes and edges with different types. We use
matrix WMSG to capture the edge dependency of each head.
Note that the sub-component does not depend on the one
above, so it can be processed simultaneously as the previous
one. (3) Target-Specific Heterogeneous Message Aggregation:
The sub-component is a multi-layer perception whose input is
the aggregation of the outputs of the two components above,
and the output is the contextualized representative vector H(l)

of node t. Also, this sub-component uses an Exponential
Linear Unit (ELU) as an activation function.

The target node t goes through L HGT layers to create
the embedding vector H(L)[t]. Such a mechanism ensures the
final embedding vector of t is considered on multiple aspects
through transformer architecture.

Optimization for Detection. For graph or node classifica-
tion tasks, we use a multi-layer perceptron (MLP) with the
softmax function as an activation function. The input of the
layer depends on the prediction tasks. To reduce the effects of
derivative saturation, we use cross entropy as the loss function
during training, and the parameters of our model are learned
through back-propagation with gradient descent algorithms.

E. Two-Phase Vulnerability Detector

This component comprises two primary phases: Coarse-
Grained Detection and Fine-Grained Detection. While the for-
mer phase assesses clean versus vulnerable smart contracts at
the contract level based on the input bytecode or source code,
the latter phase determines the line locations of vulnerabilities
in the contract source code. One of our new contributions
is detecting vulnerabilities at the line level, whereas earlier
learning-based methods [12], [14] only report vulnerabilities
at the contract or function level.

1) Phase 1: Coarse-Grained Detection: This phase deter-
mines whether a smart contract is vulnerable. We employ the
heterogeneous contract graphs and their embeddings for each
input smart contract, and we train the MLP (Section IV-D) to
predict whether a HCG is clean or vulnerable. The MLP can
produce a confidence score for each input graph with respect
to each bug type; the contract is classified/predicted as buggy
when the confidence score for the graph with respect to a bug
type is greater than 0.5. This classification helps reduce the
search space by filtering out likely clean smart contracts prior
to the second phase of line-level vulnerability detection.

Bug Types # Total / Buggy
Contracts

Total
Nodes
(source / byte code)

Total
Edges
(source / byte code)

Buggy
Nodes
(source code only)

Access
Control 114 / 57 13014 / 44475 10721 / 61896 7500

Arithmetic 120 / 60 17372 / 47967 14271 / 66020 10110
Denial of
Service 92 / 46 13968 / 41066 11997 / 56711 8280

Front
Running 88 / 44 22824 /51297 19761 / 71652 10008

Reentrancy 142 / 71 18898 / 46856 17614 / 64798 11238
Time
Manipulation 100 / 50 16765 / 43424 15550 / 60464 10051

Unchecked
Low Level Calls 190 / 95 17756 / 55103 14858 / 75950 7583

Total 846 / 423 120597 / 330188 119630 / 457491 64770

TABLE I
STATISTICS OF THE MIXED DATASET.

2) Phase 2: Fine-Grained Detection: For the smart con-
tracts identified in the previous phase, the node embeddings
of their heterogeneous contract graphs will go through node
classification to determine if the nodes may be buggy. Similar
to Phase 1, the MLP of the node classification step can produce
a confidence score for each node in the input graph with
respect to each bug type; a node is classified/predicted as
buggy when the confidence score for the node with respect to
a bug type is greater than 0.5. Note that the nodes correspond
to statements or lines in source code, so we can identify the
locations of vulnerabilities at the line level in source code 3.

V. EMPIRICAL EVALUATION

We publicize the datasets and our graph embedding models
at https://github.com/MANDO-Project/ge-sc-transformer.

A. Dataset

Our evaluation is carried out on a mixture of three datasets:
(1) Smartbugs Curated [23], [24] is a collection of vul-

nerable Ethereum smart contracts organized into nine types. It
contains 143 annotated contracts having 208 tagged vulnera-
bilities. (2) SolidiFI-Benchmark [25] is a synthetic dataset of
vulnerable smart contracts with 9369 injected vulnerabilities in
350 distinct contracts and seven different vulnerability types.
To ensure consistency in the evaluation, we only focus on the
seven types of vulnerabilities that are joint in both datasets,
including Access Control, Arithmetic, Denial of Service, Front
Running, Reentracy, Time Manipulation, and Unchecked Low
Level Calls. Together with Smartbugs Curated, we have 423
buggy smart contracts in total since there are some contracts
that could not be processed by Slither [7] or EtherSolve [67].
(3) Clean Smart Contracts from Smartbugs Wild [23], [24]
is a set of 47,398 Ethereum smart contracts. We identified
2,742 contracts out of 47,398 that do not contain any bugs
using 11 integrated detection tools of Smartbugs. Thus, we
use the 2,742 contracts as a set of clean contracts.

The smart contracts in all the datasets are in source code
form. We employ Slither [7] to traverse and generate the
basic homogeneous forms of CFGs and CGs for the input
source code. To get smart contract bytecode, we use Cryptic

3MANDO-HGT can also potentially detect bugs at the instruction level in
bytecodes. However, when the bytecode instructions cannot be mapped back
to source code lines, the detection results may not be readable by human
developers. Thus we do not perform instruction/line-level bug detection for
bytecode in this paper.

6

Methods Access
Control Arithmetic Denial of

Service
Front

Running Reentrancy Time
Manipulation

Unchecked Low
Level Calls

Original
Heterogeneous GNN metapath2vec 48.43 54.89 64.13 66.79 64.28 60.73 62.74

72.80 69.52 69.46 69.86 62.38 64.88 69.23

Original
Homogeneous GNNs

LINE 57.22 51.45 61.11 50.74 66.34 65.92 63.79
68.64 69.20 70.98 69.52 67.39 69.99 70.00

node2vec 60.78 61.73 64.16 66.50 62.69 64.53 63.22
53.64 55.55 49.63 50.27 49.23 50.04 53.15

The best Buggy F1
scores of MANDO

Node features of
the best scores

71.19 66.85 89.15 89.86 76.09 87.71 72.08
82.91 81.22 83.95 84.09 79.13 83.95 77.76

MANDO-HGT with
Node Features
Generated by

NodeType One
Hot Vectors

82.86 88.13 89.33 92.69 93.84 95.68 80.11
79.46 88.93 85.93 87.67 87.97 81.39 76.14

metapath2vec 83.65 88.86 88.91 93.70 94.78 95.89 81.75
78.56 86.93 86.69 86.15 87.05 81.89 77.07

LINE 82.75 89.41 89.89 95.23 93.27 95.99 80.77
77.73 88.39 87.47 86.62 87.69 81.36 76.83

node2vec 82.65 87.91 85.86 90.83 93.75 95.81 79.05
80.67 87.77 87.63 86.19 84.84 81.23 76.14

TABLE II
PERFORMANCE COMPARISON IN TERMS OF BUGGY-F1 SCORE ON DIFFERENT BUG DETECTION METHODS AT THE contract GRANULARITY LEVEL FOR
BOTH source code AND bytecode. IN EACH CELL, THE FIRST NUMBER IS THE SOURCE CODE’S RESULT, AND THE SECOND WITH GREY SHADING IS THE

BYTECODE’S RESULT. WE USE THE Heterogeneous Contract Graphs OF BOTH CLEAN AND BUGGY SMART CONTRACTS AS THE INPUTS FOR
MANDO-HGT. THE BEST PERFORMANCE FOR EACH BUG TYPE IS IN BOLDFACE SEPARATELY FOR SOURCE CODE AND BYTECODE. FOR MANDO, WE

ONLY REPORT THE BEST PERFORMANCE AMONG NODE FEATURE GENERATORS FROM THEIR PAPER [22], DUE TO SPACE LIMIT.

compiler [74], a Python wrapper of the Solidity compiler, with
the Solc versions flexibly depending on the declared versions
in the source code, to generate the runtime bytecode from
these source files. Then we use the EtherSolve tool [75] to
build basic CFGs for bytecode. We have also developed a
component for transforming the traditional CFGs and CGs
generated by EtherSolve or Slither to our heterogeneous CFGs
and heterogeneous CGs and then fuse them into heterogeneous
contract graphs before extracting meta relations and feeding
them to the MANDO-HGT GNN component.

Also, we randomly take some smart contracts from the
clean set and mix them with the buggy set. We keep a ratio
of 1:1 between clean and buggy contracts, in order to have
more balanced training/test datasets for both graph and node
classification tasks, following practices used in other deep
learning-based bug detection studies in the literature that use
more or less balanced datasets, e.g., SySeVR [51], Russell et
al. [45]. Table I shows the actual numbers of buggy contracts
and total numbers of contracts used in our experiments for
each bug type, as well as the total numbers of nodes and edges
in the constructed heterogeneous contract graphs for source
code and bytecode. Note that for the fine-grained line-level
bug detection task, our approach requires line-level labels for
the bugs but some other datasets, such as the ones of Zhuang et
al. [12], Liu et al. [14], and eThor [37] are not suitable for our
experiments because they only have coarse-grained contract-
or function-level labels for the bugs.

Note that the employed Slither and Ethersolve parsers do
not automatically generate clean or vulnerable labels for a
node. Instead, we wrote automated scripts to label the nodes
based on the lines of vulnerable code identified either manually
by Smartbugs authors or injected by the SolidiFI tool. For
instance, Smartbugs authors label Line 11 in Figure 1 as
containing a reentrancy bug; then our scripts labeled the nodes
with red text in the heterogeneous CFG and CG as vulnerable.

B. Evaluation Metrics

Our prediction results are binary (clean versus vulnerable)
classification of a node or graph, so we measure the prediction
performance using the commonly used F1 scores. An F1-score
evaluates the performance of a model’s prediction by taking
the harmonic mean of precision and recall of the model for a
given class label. As detecting bugs is the main interest of our
evaluation, we measure the F1-score metrics to evaluate the
performance of the models when classifying vulnerabilities;
for the bug label, and we refer to this metric as Buggy-F1 4.

C. Baselines and Parameter Settings

Baselines. To show the advantages of heterogeneous graph
learning over homogeneous graph learning, we use both of
them in our evaluation: We apply metapath2vec [19] as
the heterogeneous graph neural networks, while applying
node2vec [71], LINE [76], and GCN [77] as homogeneous
GNNs. Node embeddings generated from the baseline GNNs
are used as the Node Feature Extractor for input node
features of our MANDO-HGT GNN and the prediction
baselines as well. Additionally, we use some variants of
MANDO [22], a recent framework specialized in smart con-
tract vulnerability detection based on GAT [73] and HAN [20]
graph neural networks with multiple dynamic customized
metapaths, as the baselines. We also compare our line-level
source code bug detection method to six widely used smart
contract vulnerability detection tools based on conventional
software analysis techniques: Manticore [6], Mythril [78],
Oyente [5], Securify [9], Slither [7], and Smartcheck [8].

4To measure the effects of imbalances between clean and buggy data,
Macro-F1 is also often considered in the literature by averaging the F1 scores
of all class labels. However, in our case, we used a ratio of 1:1 to balance
the amount of clean and vulnerable contracts and found that Macro-F1 scores
are very close to Buggy-F1 and omitted them in the paper.

7

Methods Access
Control Arithmetic Denial of

Service
Front

Running Reentrancy Time
Manipulation

Unchecked Low
Level Calls

Conventional
Detection Tools

securify 13.0 0.0 18.0 53.0 23.0 24.0 11.0
mythril 34.0 73.0 41.0 63.0 19.0 23.0 14.0
slither 32.0 0.0 13.0 26.0 15.0 44.0 10.0
manticore 30.0 30.0 12.0 7.0 9.0 24.0 4.0
smartcheck 20.0 22.0 52.0 0.0 22.0 44.0 11.0
oyente 21.0 71.0 48.0 0.0 20.0 24.0 8.0

Heterogeneous GNN metapath2vec 35.46 68.70 60.64 80.65 71.66 67.51 26.06

Homogeneous GNNs GCN 43.92 65.69 64.06 81.09 71.76 68.70 38.13
LINE 53.59 68.61 62.28 83.06 74.78 70.76 7.10
node2vec 44.94 67.84 63.92 81.84 71.52 67.81 34.26

The best buggy
scores of MANDO

Node features
of the best scores

81.98 84.35 82.12 90.51 86.40 90.29 84.81

MANDO-HGT with
Node Features
Generated by

NodeType One
Hot Vectors

89.46 91.18 86.81 94.02 92.59 95.04 90.09

metapath2vec 78.99 82.99 76.54 89.13 84.06 89.83 76.05
GCN 87.76 88.86 83.73 92.96 89.59 92.91 89.47
LINE 86.58 87.98 83.00 92.17 88.77 93.26 90.89
node2vec 84.23 84.66 81.93 90.46 88.48 92.31 87.60

TABLE III
PERFORMANCE COMPARISON IN TERMS OF BUGGY-F1 SCORE ON DIFFERENT BUG DETECTION METHODS BASED ON source code AT THE line

GRANULARITY LEVEL. THE BEST PERFORMANCE FOR EACH BUG TYPE IS IN BOLDFACE.

Parameter Settings. All models have their node or graph
embedding size set to 128. We employ an adaptive learning
rate ranging from 0.0005 to 0.01 for coarse-grained classifica-
tion and from 0.0002 to 0.005 for fine-grained classification.
For each target node and its each meta-relation pair that are
fed to the MANDO-HGT GNN, we use two HGT layers [21]
and set eight multi-heads whose hidden size is 128. We use
their recommended settings for node2vec, LINE, GCN, meta-
path2vec, and MANDO to ensure the highest performance.

D. Experimental Results

In our initial experiments, we divided the 423 buggy con-
tracts and 2,742 clean contracts into the training/validation/test
sets using the 60%/20%/20% split ratio. However, some bug
types in our dataset have fewer than 50 contracts, resulting
in insufficient training/testing samples. In addition, we dis-
covered that the loss value remains constant after a fixed
number of epochs (100 and 50 epochs for Fine-Grained and
Coarse-Grained tasks, respectively). In order to increase the
training/test set sizes and maintain the proportion of vulnerable
nodes in each set, we decided to split the contracts into only
training/test sets using the 70%/30% ratio for all the bug types.
For each setting, embedding method, and bug type, to ensure
the robustness of our results we repeated the experiments 20
times with a different random seed and performed t-tests, and
report the average results.

1) Coarse-Grained Contract-Level Vulnerability Detection:
Table II shows the average results of 20 independent runs of
the baselines and MANDO-HGT at the contract level for both
source code and bytecode. We can observe that:
• MANDO-HGT and MANDO with node type generated by

one hot vector [22] perform better than other methods,
i.e., original heterogeneous and homogeneous GNNs for
detecting bugs at source code or byte code levels. For
instance, MANDO-HGT improves up to 34.52% compared
to heterogeneous GNN for detecting arithmetic bugs with

source code inputs. Moreover, no matter what methods are
used to generate node feature, MANDO and MANDO-HGT
frameworks still outperforms the baselines.

• Between MANDO-HGT and MANDO, the performance of
MANDO-HGT is overall higher than that of the former for
both source code and bytecode. However, the performance
gaps between the two frameworks for some bug types are
relatively small, e.g., 2.24% in access control bugs in the
bytecode. For this reason, we apply a t-test to check if the
performance of MANDO-HGT is statistically significantly
better than MANDO based on the 20 runs of both models
for each bug type. All of the t-values are positive while
most p-values are less than 0.05, which implies that the
performance of MANDO-HGT for most bug types is
statistically significantly better than MANDO.

• It is clear that integrating node features via different graph
neural networks inside MANDO-HGT outperforms all
other GNN baselines, although it is unclear which node
features perform the best. This observation is also applicable
to various node features used by previous studies, e.g.,
MANDO. Hence, we believe that an architecture combining
different GNNs is useful for classifying buggy contracts.

2) Fine-Grained Line-Level Vulnerability Detection: Ta-
ble III shows the performances of MANDO-HGT and other
baselines based on source code at the line level. From the
results, we observe that:
• MANDO-HGT generally outperforms conventional

analysis-based bug detection tools and basic GNNs. The
performance improvements are around 10.96%–76.89% in
Buggy-F1 scores, for different bug types. For example, for
the time manipulation bugs, we got a 95.04% Buggy-F1
score, considerably higher than the best 70.76% among
the baseline conventional tools and basic GNNs. Some
conventional detection tools in Table III hardly function
(Buggy-F1=0%) for certain vulnerability types due to their

8

inherent limitations in relying on predefined patterns that
are incapable of capturing these vulnerabilities.

• In MANDO-HGT, node features generated by one hot vec-
tor are better than other node feature generating methods for
most bug types. The only exception is the node features gen-
erated by LINE in MANDO-HGT for detecting unchecked
low level calls bugs. For example, for the reentrancy bugs,
we got the best Buggy-F1, 92.59%, with the node features
based on NodeType One Hot vectors. The models with node
features generated by other methods are all lower.

E. Case Studies: Interpreting Vulnerability Prediction Results

To shed light on the reasons why MANDO-HGT can
produce successful or failed predictions, we aim to identify
certain correlations between MANDO-HGT’s prediction re-
sults and the actual semantics of smart contract code in this
section. We use a post-hoc local model-agnostic interpretable
framework, GraphSVX [27], a state-of-the-art method for
graph interpretability, based on Shapley value [79] for graph
neural networks to interpret the behaviors and confidence of
our model’s predictions versus the input smart contract source
code. We also evaluated several other XAI methods, including
the original SHAP, and found that the results of GraphSVX
were better than others since GraphSVX considers more of the
structures of graphs while the SHAP only considers individual
object embeddings. Shapley values of an individual feature j is
ϕ(val(j)) providing a proxy to assess the overall significance
of the feature j to an output of a data point by averaging
the marginal contribution of the feature across all possible
coalitions where the feature presents. In MANDO-HGT,
when making a prediction on a focal node, we consider all
neighbors N of this node as the features which could impact
the prediction on the focal node. We obtain the Shapley value
by:

ϕ(val(j)) =
∑

S⊆{1,...,N}\{j}
|S|!×(N−|S|−1)!

N ! (val(S ∪ {j})− val(S)),

where S ⊆ {1, . . . , N}\{j} are the possible coalitions of node
j’s neighbors, and val(S) = E [f(X) | XS = xs] − E[f(X)]
with E[f(X)] being average prediction of dataset X.

We extract neighbor nodes of a focal node and compute
their marginal contribution towards the prediction for the focal
node, and use some random masking strategy [27] to select
subsets of them to calculate their Shapley values more effi-
ciently. The Shapley value of a node implies the contribution
of the node to the focal node, and a node’s confidence refers
to the confidence score of the model’s prediction for the node.
A node is considered buggy if its confidence score is greater
than 0.5 with respect to a bug type (cf. Section IV-E).

For any given node used as a focal node for examination, we
calculate all of its neighbors’ Shapley values to find out their
effect on the model’s bug prediction result. Larger Shapley
values indicate the neighbor’s higher impact on the focal node.
In the following, we explain several cases where MANDO-
HGT makes correct or incorrect predictions to further study
possible correlations between the Shapley values of a focal
node’s neighbors and its meta relations. For instance, a buggy

Fig. 5. True positive cases of access control and arithmetic samples.

node might belong to several meta relations, and if there is a
meta relation that frequently contains nodes of a certain bug
type and contributes the highest Shapley value to the focal
node, the focal node’s bug prediction confidence might be
high. On the contrary, if some meta relations contain clean
nodes contributing high Shapley values to the focal node, the
bug prediction confidence for the focal node might be low.

From Figure 5 to Figure 8, subgraphs of the heterogeneous
contract graphs are shown next to their source code. The
nodes are filled with either red or green, indicating either
buggy or clean predictions by our model for the nodes. The
circle or triangle shapes of the nodes stand for buggy or clean
nodes as indicated by the ground-truth labels. The yellow
tag for each node contains information on the node type, its
corresponding lines of source code, the confidence score of our
model prediction (when the confidence is higher than 0.5, the
node is predicted as buggy; otherwise, clean), and the Shapley
value of that node to the focal node at the end of the arrow
chain in each subgraph.

1) True positive cases: Figure 5-(1) shows a code snippet
together with a sub-graph of its HCG that contains an access
control bug at Line 27 corresponding to the focal node
EXPRESSION in this case. We saw a meta-relation pair
⟨FUNCTION NAME,next, ENTRY POINT ⟩ and
⟨ENTRY POINT, next, EXPRESSION⟩ frequently
appear in our samples. In this case, FUNCTION NAME
and ENTRY POINT nodes correspond to the whole
PopBonusCode function were predicted as a buggy
node and had approximate Shapley values 0.506 and
0.494 contributing to the focal EXPRESSION node,
which implies that the focal node is likely buggy too.
Indeed, MANDO-HGT correctly predicted the focal
EXPRESSION node as buggy.

Figure 5-(2) illustrates a smart contract that has
arithmetic bugs at Lines 15, 18, 21, 24, 27, and

9

Fig. 6. True negative case of access control sample

Fig. 7. False positive cases of front running and reentrancy samples

30 because the input variables in these functions
are not checked for overflow or underflow before the
operations are performed. One of the meta-relation pairs,
⟨FUNCTION NAME,next, ENTRY POINT ⟩
and ⟨ENTRY POINT, next, EXPRESSION⟩,
appears three times in Lines 15, 18, and 21. Lines 24,
27, and 30 correspond to another meta-relation pair:
⟨FUNCTION NAME,next, ENTRY POINT ⟩ and
⟨ENTRY POINT, next,NEW V ARIABLE⟩. The
FUNCTION NAME and ENTRY POINT nodes
represent an entire function and its entry point, indicating
such bugs often happen at the beginning of a function with
specific operations. MANDO-HGT is good at recognizing
such frequently appearing bug patterns. Correspondingly,
the Shapley values of these nodes to the focal buggy
EXPRESSION and NEW V ARIABLE nodes are
around 0.5, which implies that relatively high Shapley values
might reflect frequently occurring patterns for bug detection.

2) True negative cases: The code in Fig-
ure 6 generated a HCG with meta-relation pair
⟨FUNCTION NAME,next, ENTRY POINT ⟩
and ⟨ENTRY POINT, next,RETURN⟩. Its meta
relations with EXPRESSION , ENTRY POINT , and
FUNCTION NAME node types also differ from those
of access control bugs (e.g., the one in Figure 5-(1)).
Besides, the Shapley values of ENTRY POINT and
FUNCTION NAME nodes of function isComplete
to the focal RETURN statement, in this case, are 0.5,
indicating that the two nodes (which are clean) have
relatively significant impact on the prediction for RETURN .
MANDO-HGT correctly predicted the focal node as a clean
node (via a very low bug confidence score 0.002).

3) False positive cases: MANDO-HGT may wrongly pre-
dict some clean code as buggy. For example, for front running

Fig. 8. False negative cases of arithmetic and reentrancy samples

vulnerabilities, which are typically found in a statement that
attempts to transfer a high amount for their transaction to
be prioritized, they often involve an EXPRESSION node,
similar to the node for the line 22 in Figure 7-(1). However,
some clean statements occasionally preceding the buggy line
are also EXPRESSION nodes, such as lines 19 and 20
in function setReward. The Shapley values from the buggy
FUNCTION NAME and ENTRY POINT nodes are
0.5 and 0.5, which indicated that they have significant impact
to that focal node, causing our model to mistakenly classify
the focal node at Line 19 as buggy.

Figure 7-(2) illustrates a similar false positive situation
for the reentrancy bug type. The NEW V ARIABLE node
corresponds to the code Line 18 defining a new vari-
able and has a reentrancy bug in relation to the reduc-
tion of relevant credit to zero at Line 20. The focal
EXPRESSION node at Line 19 was wrongly predicted
by MANDO-HGT, likely because it has data dependency
with callResult defined at the buggy line 18. The buggy
nodes like FUNCTION NAME, ENTRY POINT , and
NEW V ARIABLE at Line 18 have relatively higher Shap-
ley values of 0.251, 0.251, and 0.169 to the focal node at
Line 19 than the Shapley values from the other two clean
nodes (IF at Line 15 and NEW V ARIABLE at Line 14),
0.184 and 0.108. This indicates that the buggy nodes have
more impact on the focal EXPRESSION node at Line 19,
causing MANDO-HGT to misclassify it as buggy.

4) False negative cases: MANDO-HGT may also
miss certain vulnerabilities. For example, Figure 8 shows
a reentrancy bug in the focal node ENTRY POINT
involving lines 15,16,17, but our model predicts it as
a clean node. By considering the meta relations pair
⟨FUNCTION NAME,next, FUNCTION NAME⟩
and ⟨FUNCTION NAME,next, ENTRY POINT ⟩ of
the focal node, we have the clean FUNCTION NAME
node containing lines 46, 47, 48 with 0.5 Shapley value
having the greatest impact to the focal ENTRY POINT
node, higher than the 0.131 Shapley value from the buggy
FUNCTION NAME node containing lines 15,16,17,
causing our model to predict the focal node as clean.

F. Limitations and Discussions

We know that the effectiveness of heterogeneous graph
transformers relies on node/edge types and meta relations used,

10

besides various hyperparameters for training. The graphs used
to represent syntactical and semantic information from smart
contract source code or bytecode also significantly impact
graph learning. Especially for bytecode, whose syntactical
structure is flatter with more obscured semantic information
than source code, suitable graph representations become more
important for effective learning. Also, although our model can
detect fine-grained bugs at the instruction level for bytecode as
well, it would be better to map the detected bugs in bytecode
back to source code lines for better readability when reporting
the results to developers. We restrain our tool from reporting
instruction-level bug detection results before we have a reliable
way to make the results understandable in relation to their
source code.

Lacking labeled data is always an issue when applying
supervised learning to classification tasks, especially for smart
contracts with limited sample buggy code for training. Al-
though Smartbugs and SolidiFI datasets are useful, some smart
contracts in the datasets were not annotated. Furthermore, the
labels annotated in the datasets for some bugs may not always
be objective and agreeable by all developers as there can be
subjective and more than one interpretation of the root causes
of a bug (e.g., bugs due to some missing lines of code);
some labels are not fine-grained enough for each line or even
each expression in code. Such inconsistent labels may hinder
the training of our models. In our experiments, we excluded
unlabelled data and manually checked some data samples and
corrected a few inconsistent labels, and used balanced data sets
for training and testing, to minimize the impact of inaccurate
labels or imbalanced data.

In the experiments, some smart contracts could not be
processed by Slither [7] or EtherSolve [67]. One of the main
limitations of the tools is that they rely on the Solidity compiler
to build the control-flow graph of the contracts, but there are
issues related to the version compatibility of Solidity or the
uses of optimized/obfuscated bytecode. For example, a smart
contract written in an older version of Solidity is not supported
by the compiler used by Slither or EtherSolve; the control-flow
graph may not be built successfully.

VI. CONCLUSION & FUTURE WORK

This paper proposes a new learning-based vulnerability
detection framework for Ethereum smart contract source code
and bytecode, named MANDO-HGT, using heterogeneous
graph transformer (HGT) techniques. In particular, it con-
structs heterogeneous contract graphs (HCGs) that represent
control flow and function call relations of smart contracts,
then defines customized meta relations based on node/edge
types in HCGs, adapts HGT models to generate embeddings
for nodes and graphs, and uses the embeddings to train
classifiers to recognize various types of buggy code at the
granularity levels corresponding to either individual contracts
or individual lines of code. Our evaluation results on a curated
smart contract dataset containing labeled vulnerabilities show
that MANDO-HGT can significantly improve the accuracy
of many previous vulnerability detection techniques, including

best-performing learning-based and best-performing conven-
tional analysis-based ones. The improvements in terms of the
F1-score range from 0.74% to 76.89% for various bug types
and detection techniques.

In the future, we will extend heterogeneous contract graphs
to be more comprehensive graph representations of Ethereum
smart contracts (e.g., data dependencies and contract calls)
for both source code and bytecode and combine heteroge-
neous graph transformers with more graph learning techniques,
especially those suitable for few-shot learning and handling
inconsistent labels, for more accurate and usable vulnerability
detection. It may also be possible and interesting to utilize
results from conventional testing, analysis, and verification
techniques to help better train and improve our approach.

REFERENCES

[1] J. Frizzo-Barker, P. A. Chow-White, P. R. Adams, J. Mentanko, D. Ha,
and S. Green, “Blockchain as a disruptive technology for business: A
systematic review,” International Journal of Information Management,
vol. 51, p. 102029, Apr. 2020.

[2] B. Bhushan, P. Sinha, K. M. Sagayam, and J. Andrew, “Untangling
blockchain technology: A survey on state of the art, security threats,
privacy services, applications and future research directions,” Computers
& Electrical Engineering, vol. 90, p. 106897, 2021.

[3] J. Chen, X. Xia, D. Lo, J. Grundy, and X. Yang, “Maintenance-related
concerns for post-deployed ethereum smart contract development: issues,
techniques, and future challenges,” Empirical Software Engineering,
vol. 26, no. 6, pp. 1–44, 2021.

[4] B. Jiang, Y. Liu, and W. Chan, “ContractFuzzer: Fuzzing smart contracts
for vulnerability detection,” in 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2018, pp. 259–269.

[5] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in the ACM SIGSAC conference on computer and
communications security (CCS), 2016, pp. 254–269.

[6] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” in the 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2019, pp. 1186–1189.

[7] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain, 2019, pp.
8–15.

[8] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “SmartCheck: Static analysis of
ethereum smart contracts,” in the 1st International Workshop on Emerg-
ing Trends in Software Engineering for Blockchain, 2018, pp. 9–16.

[9] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. Vechev,
“Securify: Practical security analysis of smart contracts,” in 25th ACM
Conference on Computer and Communications Security, 2018.

[10] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, “Verx: Safety verification of smart contracts,” in 2020 IEEE
symposium on security and privacy (SP). IEEE, 2020, pp. 1661–1677.

[11] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu et al., “KEVM: A complete
formal semantics of the ethereum virtual machine,” in IEEE 31st
Computer Security Foundations Symposium (CSF), 2018, pp. 204–217.

[12] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart contract
vulnerability detection using graph neural network,” in IJCAI, 2020, pp.
3283–3290.

[13] S. Han, B. Liang, J. Huang, and W. Shi, “DC-Hunter: Detecting
dangerous smart contracts via bytecode matching,” Journal of Cyber
Security, May 2020.

[14] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang, “Com-
bining graph neural networks with expert knowledge for smart contract
vulnerability detection,” IEEE Transactions on Knowledge and Data
Engineering, 2021.

[15] H. Zhao, P. Su, Y. Wei, K. Gai, and M. Qiu, “GAN-enabled code em-
bedding for reentrant vulnerabilities detection,” in Knowledge Science,
Engineering and Management, 2021, pp. 585–597.

11

[16] Z. Bo, S. Chenhan, P. Xiaoyan, A. Yang, T. Juncheng, and Y. Anqi,
“Semantic-aware graph neural network for smart contract bytecode
vulnerability detection,” Advanced Engineering Sciences, vol. 54, no. 2,
pp. 49–55, 2022.

[17] Z. Gao, L. Jiang, X. Xia, D. Lo, and J. Grundy, “Checking smart con-
tracts with structural code embedding,” IEEE Transactions on Software
Engineering, 2020.

[18] Y. Sun and J. Han, “Mining heterogeneous information networks:
a structural analysis approach,” Acm Sigkdd Explorations Newsletter,
vol. 14, no. 2, pp. 20–28, 2013.

[19] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2017, pp. 135–144.

[20] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in The World Wide Web
Conference, 2019, pp. 2022–2032.

[21] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph trans-
former,” in Proceedings of The Web Conference, 2020, pp. 2704–2710.

[22] H. H. Nguyen, N.-M. Nguyen, C. Xie, Z. Ahmadi, D. Kudendo, T.-
N. Doan, and L. Jiang, “MANDO: Multi-level heterogeneous graph
embeddings for fine-grained detection of smart contract vulnerabilities,”
in 9th IEEE International Conference on Data Science and Advanced
Analytics (DSAA), 2022.

[23] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review
of automated analysis tools on 47,587 ethereum smart contracts,” in
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 530–541.

[24] J. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, “Smartbugs: a
framework to analyze solidity smart contracts,” in the 35th IEEE/ACM
International Conference on Automated Software Engineering, 2020, pp.
1349–1352.

[25] A. Ghaleb and K. Pattabiraman, “How effective are smart contract
analysis tools? evaluating smart contract static analysis tools using bug
injection,” in the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2020.

[26] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, vol. 30,
2017.

[27] A. Duval and F. Malliaros, “Graphsvx: Shapley value explanations for
graph neural networks,” in European Conference on Machine Learning
and Knowledge Discovery in Databases (ECML PKDD), 2021.

[28] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sFuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in the ACM/IEEE
42nd International Conference on Software Engineering, 2020, pp. 778–
788.

[29] I. Ashraf, X. Ma, B. Jiang, and W. K. Chan, “GasFuzzer: Fuzzing
ethereum smart contract binaries to expose gas-oriented exception secu-
rity vulnerabilities,” IEEE Access, vol. 8, pp. 99 552–99 564, 2020.

[30] Y. Liu, Y. Li, S.-W. Lin, and Q. Yan, “ModCon: A model-based testing
platform for smart contracts,” in 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2020, pp. 1601–1605.

[31] Y. Huang, B. Jiang, and W. K. Chan, “EOSFuzzer: Fuzzing eosio smart
contracts for vulnerability detection,” in 12th Asia-Pacific Symposium
on Internetware, 2020, pp. 99–109.

[32] B. Jiang, Y. Chen, D. Wang, I. Ashraf, and W. Chan, “WANA: Symbolic
execution of wasm bytecode for extensible smart contract vulnerability
detection,” in IEEE 21st International Conference on Software Quality,
Reliability and Security (QRS), 2021, pp. 926–937.

[33] K. Weiss and J. Schütte, “Annotary: A concolic execution system for
developing secure smart contracts,” in European Symposium on Research
in Computer Security. Springer, 2019, pp. 747–766.

[34] S. So, S. Hong, and H. Oh, “smartest: Effectively hunting vulnerable
transaction sequences in smart contracts through language model-guided
symbolic execution,” in 30th USENIX Security Symposium, 2021, pp.
1361–1378.

[35] ConsenSys, “MythX Tech: Behind the scenes of
smartcontract security analysis,” https://blog.mythx.io/features/
mythx-tech-behind-the-scenes-of-smart-contract-analysis/, 2019. [On-
line]. Available: https://github.com/ConsenSys/mythril

[36] Y. Xue, M. Ma, Y. Lin, Y. Sui, J. Ye, and T. Peng, “Cross-contract
static analysis for detecting practical reentrancy vulnerabilities in smart

contracts,” in 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2020, pp. 1029–1040.

[37] C. Schneidewind, I. Grishchenko, M. Scherer, and M. Maffei, “eThor:
Practical and provably sound static analysis of ethereum smart con-
tracts,” in ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 621–640.

[38] I. Grishchenko, M. Maffei, and C. Schneidewind, “Foundations and tools
for the static analysis of ethereum smart contracts,” in International
Conference on Computer Aided Verification. Springer, 2018, pp. 51–
78.

[39] ——, “EtherTrust: Sound static analysis of ethereum bytecode,” Tech-
nische Universität Wien, Tech. Rep, 2018.

[40] A. Wang, H. Wang, B. Jiang, and W. K. Chan, “Artemis: An improved
smart contract verification tool for vulnerability detection,” in 2020 7th
International Conference on Dependable Systems and Their Applications
(DSA). IEEE, 2020, pp. 173–181.

[41] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, “A survey of smart
contract formal specification and verification,” ACM Computing Surveys
(CSUR), vol. 54, no. 7, pp. 1–38, 2021.

[42] D. Park, Y. Zhang, M. Saxena, P. Daian, and G. Roşu, “A formal
verification tool for ethereum vm bytecode,” in 26th ACM ESEC/FSE,
2018, pp. 912–915.

[43] J. Jiao, S. Kan, S.-W. Lin, D. Sanan, Y. Liu, and J. Sun, “Semantic
understanding of smart contracts: Executable operational semantics of
solidity,” in IEEE Symposium on Security and Privacy (SP), 2020, pp.
1695–1712.

[44] I. Grishchenko, M. Maffei, and C. Schneidewind, “A semantic frame-
work for the security analysis of ethereum smart contracts,” in Interna-
tional Conference on Principles of Security and Trust. Springer, 2018,
pp. 243–269.

[45] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in 17th IEEE in-
ternational conference on machine learning and applications (ICMLA),
2018, pp. 757–762.

[46] X. Cheng, H. Wang, J. Hua, M. Zhang, G. Xu, L. Yi, and Y. Sui, “Static
detection of control-flow-related vulnerabilities using graph embedding,”
in 2019 24th International Conference on Engineering of Complex
Computer Systems (ICECCS). IEEE, 2019, pp. 41–50.

[47] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

[48] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “VulDeeLocator: a
deep learning-based fine-grained vulnerability detector,” IEEE Transac-
tions on Dependable and Secure Computing, 2021.

[49] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet,” IEEE Transactions on
Software Engineering, 2021.

[50] Y. Wu, D. Zou, S. Dou, W. Yang, D. Xu, and H. Jin, “VulCNN: An
image-inspired scalable vulnerability detection system,” in ICSE, 2022.

[51] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “SySeVR: A
framework for using deep learning to detect software vulnerabilities,”
IEEE Transactions on Dependable and Secure Computing, 2021.

[52] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, “DeepWukong: Statically
detecting software vulnerabilities using deep graph neural network,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 30, no. 3, pp. 1–33, 2021.

[53] S. Cao, X. Sun, L. Bo, Y. Wei, and B. Li, “BGNN4VD: Constructing
bidirectional graph neural-network for vulnerability detection,” Informa-
tion and Software Technology, vol. 136, p. 106576, 2021.

[54] K. Zhang, W. Wang, H. Zhang, G. Li, and Z. Jin, “Learning to represent
programs with heterogeneous graphs,” in ICPC, 2022.

[55] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “ContractWard:
Automated vulnerability detection models for ethereum smart contracts,”
IEEE Transactions on Network Science and Engineering, vol. 8, no. 2,
pp. 1133–1144, 2020.

[56] A. K. Gogineni, S. Swayamjyoti, D. Sahoo, K. K. Sahu, and R. Kishore,
“Multi-class classification of vulnerabilities in smart contracts using
AWD-LSTM, with pre-trained encoder inspired from natural language
processing,” IOP SciNotes, vol. 1, no. 3, p. 035002, 2020.

[57] T. H.-D. Huang, “Hunting the ethereum smart contract: Color-inspired
inspection of potential attacks,” arXiv preprint arXiv:1807.01868, 2018.

12

[58] O. Lutz, H. Chen, H. Fereidooni, C. Sendner, A. Dmitrienko, A. R.
Sadeghi, and F. Koushanfar, “ESCORT: Ethereum smart contracts vul-
nerability detection using deep neural network and transfer learning,”
arXiv preprint arXiv:2103.12607, 2021.

[59] W. J.-W. Tann, X. J. Han, S. S. Gupta, and Y.-S. Ong, “Towards safer
smart contracts: A sequence learning approach to detecting security
threats,” arXiv preprint arXiv:1811.06632, 2018.

[60] J. Huang, S. Han, W. You, W. Shi, B. Liang, J. Wu, and Y. Wu, “Hunting
vulnerable smart contracts via graph embedding based bytecode match-
ing,” IEEE Transactions on Information Forensics and Security, vol. 16,
pp. 2144–2156, 2021.

[61] X. Zhou, D. Han, and D. Lo, “Assessing generalizability of CodeBERT,”
in IEEE International Conference on Software Maintenance and Evolu-
tion (ICSME), 2021, pp. 425–436.

[62] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou,
N. Duan, A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B.
Clement, D. Drain, N. Sundaresan, J. Yin, D. Jiang, and M. Zhou,
“GraphCodeBERT: Pre-training code representations with data flow,”
in 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
[Online]. Available: https://openreview.net/forum?id=jLoC4ez43PZ

[63] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” in Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics,
2021, pp. 8696–8708. [Online]. Available: https://aclanthology.org/
2021.emnlp-main.685

[64] N. D. Bui, Y. Yu, and L. Jiang, “InferCode: Self-supervised learning of
code representations by predicting subtrees,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1186–1197.

[65] D. Vagavolu, K. C. Swarna, and S. Chimalakonda, “A mocktail of source
code representations,” in 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2021, pp. 1296–1300.

[66] S. Yang, X. Gu, and B. Shen, “Self-supervised learning of smart contract
representations,” in ICPC, 2022.

[67] F. Contro, M. Crosara, M. Ceccato, and M. Dalla Preda, “Ethersolve:

Computing an accurate control-flow graph from ethereum bytecode,” in
2021 IEEE/ACM 29th International Conference on Program Compre-
hension (ICPC). IEEE, 2021, pp. 127–137.

[68] Z. Liu, P. Qian, X. Wang, L. Zhu, Q. He, and S. Ji, “Smart contract
vulnerability detection: From pure neural network to interpretable graph
feature and expert pattern fusion,” arXiv preprint arXiv:2106.09282,
2021.

[69] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[70] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on ethereum sys-
tems security: Vulnerabilities, attacks, and defenses,” ACM Computing
Surveys (CSUR), vol. 53, no. 3, pp. 1–43, 2020.

[71] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 855–864.

[72] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[73] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in International Conference on
Learning Representations, 2018.

[74] Crytic-compile, “Abstraction layer for smart contract build systems,”
https://github.com/crytic/crytic-compile, 2022.

[75] F. Contro, M. Crosara, and cmariano, “SeUniVr/EtherSolve: Version
used for ICPC-2021 paper,” Mar. 2021. [Online]. Available: https:
//doi.org/10.5281/zenodo.4607305

[76] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in WWW, 2015.

[77] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[78] B. Mueller, “Smashing smart contracts for fun and real profit,” in 9th
annual HITB Security Conference, pp. 2–51.

[79] L. S. Shapley, 17. A Value for n-Person Games. Princeton:
Princeton University Press, 2016, pp. 307–318. [Online]. Available:
https://doi.org/10.1515/9781400881970-018

13

