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Abstract
An essential intelligent transportation systems (ITS) application is multi-target multi-camera tracking (MTMCT), where
the target’s activity is tracked from different cameras. Although the tracking-by-detection scheme is the primary paradigm
in MTMCT, the object association information from the video frames is lost. That is mainly because the multi-camera
multi-object matching uses the information from the video frames separately. To solve this problem and leverage this
association information, we propose an MTMCT framework, where features are built in the form of a graph and a graph
similarity algorithm is used to match multi-camera objects. In this paper, we focus on the real-time scenario, where only
the past images are used to match an object. Our method achieves an IDF1 score of 0.75 with an FPS of 14

1. Introduction

City-scale intelligent traffic management is getting more
effective due to advancements in computer vision research.
One important application in intelligent traffic management
is vehicle tracking, where spatial, temporal and visual
information of the vehicle are integrated to create the
vehicle trajectory from different cameras. Multi-Target
Multi-Camera Tracking (MTMCT) is an application that
extracts the vehicle trajectory on a global scale from cameras
located at different locations, as shown in Figure 1. As a
result, MTMCT can be used to track vehicles and determine
their speed and travel time to optimise traffic flow at the city
level. Tracking-by-detection is one of the main paradigms in
MTMCT, which is divided into three main components: (1)
Object detection, (2) Multi-object tracking (MOT) and (3)
Trajectory clustering. As illustrated in Figure 1, objects are
detected and labeled with an identifier. MCMCT reidentified
”Veh-70” in the following intersection and assigned the same
label.

Object detection uses an object detector to extract objects
from small images called bounding boxes (bboxes) for each
video frame. Then MOT tracks the vehicle from the time
it enters to the time it leaves the camera view. To match
the detected objects within a single camera, MOT uses a
tracker such as Deep SORT (1). The tracker solves the
matching problem by using pairwise object affinities to match
detected objects in past frames with detected objects in the
current frame. Tracklets containing all bboxes of specific
objects in that camera are the result of MOT. Trackers
in MOT learn features based on appearance features, such
as features from object re-identification (ReID) algorithms.

Figure 1. Multi-target camera tracking (MTMCT) tracks vehicles
over cameras.

The objective of Object ReID is to find the same exact
vehicle from an extensive gallery set extracted from multiple
cameras. Primarily, ReID is based on visual features alone,
without using other information such as the license plate
number, spatial, and temporal.

Trajectory clustering is the final step of MTMCT,
where single-camera tracklets from different cameras are
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coordinated to track the activity of the object globally. This
clustering task is also usually performed using features from
an object ReID application. Due to the fact that the traditional
ReID algorithm works with separate images of objects, when
using tracklets in the trajectory clustering task, the associated
information between bboxes may be lost. A given object can
be tracked in both offline and online modes. In offline mode,
past and future frames are used to track the object, while in
online mode, only past frames are used.

In this paper we focus on the online tracking scenario.
We propose a framework for the third component of the
MTMCT application (trajectory clustering) that achieves
good performance with low latency. Our proposed trajectory
clustering technique consists of three sub-steps: (a) bbox
feature extraction by a Siamese Network, (b) graph-based
tracklet features construction, and (c) trajectory matching
using a graph similarity algorithm. In other transportation
studies, a graph frequently depicts the structure of the
road network. However, the graph in this study is formed
using Siamase features and Euclidean Distances, and it
represents the tracklet feature. Specifically, we create a
graph with nodes and edges representing bboxes and the
Euclidean distance between their embedding features to
solve associated information loss. Then, we use the graph
similarity algorithm (SimGNN (2)) to compare the graph-
based tracklet features and match the vehicle from different
cameras.

In summary, our MTMCT framework consists of three
primary steps. (1) A vehicle detection algorithm is used to
extract the objects as bboxes. (2) The single-camera tracklets
are generated. (3) Trajectory clustering that is divided into
three sub-steps: (3a) features are extracted for each image
using a Siamese Network; (3b) graph-based tracklet features
are constructed; and (3c) the graph-based tracklet features
and the graph similarity algorithm are used to match objects
from different cameras. The following is a summary of our
paper’s contributions:

• We propose a method for creating graph-based tracklet
features that leverage the association information
between the bboxes.

• We propose an MTMCT clustering method using graph
similarity algorithms.

• Our proposed MTMCT framework achieves an IDF1
score of 0.75 with with an FPS of 14.

The rest of the paper is organised as follows. We first
describe the background in Section 2. Background. This
is followed by the related work in Section 3. Related
Work. Then, our proposed method and architecture are
described in Section 4. Methodology. Next, Section 5.
Experiments and Results presents our datasets, evaluation
metrics, experimental setups and results. Finally, Section
6. Conclusion and Future Work contains our concluding,
discussion and future work.

2. Background
Our main contribution is proposing a strategy for creating
tracklets in a graph structure using a Siamase Network
feature and using graph similarity learning based on
Graph Neural Network (GNN) to group single-camera
tracklets into multi-camera tracklets. Therefore, the rest of
this section provides an overview of these two topics.

2.1 Siamese Network
It is common for machine learning to be applied to analyze
the similarity between two objects. Accordingly, for example,
(1) face recognition checks whether an input facial image
resembles one stored in the database; (2) question-and-
answer websites determine whether a new question is similar
to one stored in the database; (3) image search engines
display similar images. In this approach, each object is
represented as a vector (also known as an embedding). For
example: in (3), images are presented as vectors by using the
output of a pre-trained convolutional neural network (CNN),
then the similarity between the two vectors is calculated to
determine the degree to which the two images are similar.

Architecture Two identical subnetworks in the Siamese
network, also known as twin networks, are connected at their
outputs. Furthermore, the twin networks share not only the
same architecture but also the same weights. In parallel,
they are responsible for creating vector representations of
the inputs. In the case of images, we can use ResNet as
a twin network. The Siamese Network can be viewed as
a wrapper for twin networks. By measuring similarities
between vectors, they assist in the creation of better vector
representations.

x1

x2

Twin Network 1 v1

v2Twin Network 1

Comparision
Layer

Figure 2. The Siamese Network.

Network Structure x1 and x2 in Figure 2 represent the two
objects to be compared, and v1 and v2 represent their vector
representations. In the comparison layer, the architecture is
determined by the loss function and the labels associated with
the training data. In order to have as much information as
possible in the vector representations, the comparison layer
is usually designed in a straightforward manner. Below are
several common options for setting up the system:

• The cosine similarity between v1 and v2 is computed
as a real number between -1 and +1. The loss function
is the mean square error;

• v1 and v2 are concatenated with an absolute difference
per element |v1 − v2|, followed by fully connected
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layers and a softmax layer. A cross-entropy loss
function is used in this case. Multiclass classification
can be accomplished using this option;

• We calculate the Euclidean distance (other distances
are also acceptable) between v1 and v2, and define the
loss function as either a contrastive loss or a triplet loss.

2.2 Graph Similarity Learning Based on Graph
Neural Network
A GNN-based similarity learning method performs the
similarity learning task in an end-to-end manner while
learning graph representations. In order to learn the features
of the nodes or graphs in the encoding space of two input
graphs, GNN-based graph similarity learning methods first
apply multilayer GNNs with weights. Due to the fact that
the GNNs of each graph in a pair share weights and/or
interact with one another, the learning graphs in a pair may
influence each other. A dot product layer or fully connected
layer can be used to calculate or predict the similarity values
between two graphs based on an output matrix or vector
representation provided by the GNN layers. The final step
involves combining the similarity scores for all graph pairs
and their ground truth labels in a loss function in order to
train the model using weighted parameters (2–4).

A graph similarity learning system should be able to
improve accuracy when compared to other state-of-the-art
frameworks while maintaining a reasonable computational
cost for real-time application. To improve the model’s
predictability, all properties of the input graphs, including
graph topologies and node and edge attributes, are taken
into account. The work should adapt Siamese GNNs by
incorporating appropriate mechanisms during the learning
process with GNNs, and cross-graph interactions should
be considered during the learning process for graph
representations. Besides, the algorithm may also ignore the
input graph’s node attributes to reduce computation time.

In summary, the work combines Graph Neural Networks
(GNNs) with Convolutional Neural Networks (CNNs) to
predict graph similarity. The first step is to train GNNs to
represent graphs, and then the learned representations are
used to train CNNs to predict similarity scores. As a result,
the model becomes a complete end-to-end learning system
with additional fully linked layers used to predict similarity
values. In this way, the entire process of predicting similarity
values can be completed an FPS of 14 while maintaining an
acceptable level of accuracy. The online scenario is therefore
well suited to this approach.

3. Related Work
Due to the changes in viewpoints, the variations in
illumination, and the blind areas among the cameras,
tracking multiple targets with multiple cameras is a
challenging problem. Several recent studies have investigated

the relationship between cameras, including illumination
changes, travel times, and entry/exit zones between pairs of
cameras.

Since there is considerable variation in illumination
between different viewpoints, a brightness transfer function
(BTF) is calculated from one camera to another to model
these variations. According to Javed et al. (5), all BTFs
are arranged in a low-dimensional subspace that can be
used to compute similarities between appearances. Using the
Cumulative Brightness Transfer Function (CBTF), Prosser
et al. (6) map colours between cameras situated at different
locations. Other works (7, 8) use the spatial constraints
and traffic rules as filters to reduce the searching space in
multi-camera trajectory clustering task. Specifically, Liu et
al. (7) divide the area in the video into crossroad zones,
which are used to track the previous and next cameras of
a given tracklet. Similarly, Hsu et al. (8) propose a traffic-
aware module that detects entry- exit zones and is used to
match multi-camera tracklets with the camera link model.
Besides temporal constraints, some work utilize temporal
information in the MTMCT tasks. The model described in (9)
uses kernel-density estimation to determine the relationships
between cameras as multivariate probability densities of
spatio-temporal variables and then uses maximum likelihood
estimation to incorporate appearance features and these
spatial-temporal features

Numerous graph-based models (10–17) are proposed to
deal with MTMCT. A mini-cost flow graph is constructed
by Hofmann et al.in (11) to complete the data association
among cameras in the space of a 3D world. Based on the
k-shortest path algorithm, the data association problem in
(13) is formulated as a constrained flow optimization of a
convex problem. In (15), a modified multiple hypothesis
tracking (MHT) algorithm was developed by Yoon et al.
in which branches in track-hypothesis trees represent the
trajectory across multiple cameras. Quach et al. (17) consider
the problem of data association as a link prediction between
nodes on a dynamic graph, where the graph vertices are
associated with the tracklets, and a self-attention has used the
module to embed camera number and temporal information.

Some other works focus on the local features since data
associated with tracking systems are usually restricted to
a local area. While local area refers to consecutive frames
in MOT, it relates to neighboring cameras where the target
may be visible in MTMCT. Hou et al. (18) propose a
locality-aware appearance metric (LAAM), where training
data pairs from consecutive frames are sampled in MOT, and
training data pairs are selected from consecutive frames of
neighboring cameras in MTMCT. Although most MTMCT
applications formulate the multi-camera tracklet matching
problem as a tracklet-to-tracklet assignment, He et al. (19)
show that tracklet-to-target assignment (TRACTA) is a better
strategy. Specifically, they use the restricted non-negative
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matrix factorization (RNMF) algorithm to compute the
optimal ID assignment matrix for the tracklet.

In this paper, the best performing MTMCT is used as the
baseline described in the section 5. Experiments and Results.
In this section, we also present related work on two important
components of our framework: MOT and graph similarity.

3.1 Multi-Object Tracking (MOT)
MOT generates single-camera tracklets, the input for multi-
camera trajectory clustering tasks in MTMCT. It has been
the main trend in the MOT application for many years to
use the tracking-by-detection (20) paradigm. This paradigm
includes three main stages: (1) image object detection, (2)
feature extraction, and (3) data association.

Deep learning-based methods have become the main
trend in image object detection since they can be utilized
in small and large networks while preserving speed and
accuracy. One of the most common deep learning-based
detection algorithms is YOLO (21) and its related algorithms
such as YOLO-LITE (22) for non-GPU computers, Tinier-
YOLO (23), YOLOv4-tiny (24) for real-time applications.
Furthermore, Ouyang et al. (25) propose a JointDeep
method for identifying candidate parts based on the previous
detection method, Deformable Part Models (DPM) (26).
Other works (27–30) use two-stage R-CNN framework
as baseline in object detection architecture. In contrast to
detectors that are based on two stages of R-CNN, other
works (31, 32) use one-stage R-CNN for detecting objects
in images.

In the feature extraction stage, the detected bboxes are
used to extract the features of appearance, motion, and
time. For appearance feature, much research has been done
to learn image representation, including auto-encoder (33,
34), Object re-identification (35), feature pyramids (36),
Transformed-based (37) and Siamese Network (36, 38, 39).
Kalman filters (1) and LSTM (40) are usually used for
features of motion.

Data association group the extracted bboxes by using the
extracted features. It usually computes the similarity between
extracted features by using various metrics, such as cosine
similarity, Euclidean distance, intersection over union, and
Siamese Network (41). Recent work implements this task
using Hungarian algorithms (1), dynamic programming (42),
and reinforcement learning (43). Another work proposed by
Hsu et al. (44) applies post-processing to reduce errors. They
use the traffic rule to reduce the ID switch error that splits a
single tracklet in a camera into many tracklets.

3.2 Graph Similarity
Based on how to graph similarity or proximity is used in
learning, there are two main categories of previous GNN-
based work on learning graph similarity, including GNN-
CNN mixed models for graph similarity prediction and
Siamese GNNs-based graph matching networks.

GSimCNN (45) is a model consisting of three stages for
pairwise graph similarity prediction. As part of this model,
multi-layer graph convolutional networks (GCNs) generate
node representations and then compute the inner products
of all possible pairs of node embeddings between two
graphs derived from different GCN layers. Lastly, multiple
independent CNNs and fully linked layers are used to process
similarity matrices from different layers to predict the final
similarity value.

Ktena et al. (46) propose a method for learning graph
similarity by employing the siamese graph convolutional
neural network. As part of this model, a pair of graphs are
considered as inputs, and then a spectral GCN is applied to
generate a graph embedding for each graph of input. In the
similar work of Ma et al. (47), a higher-order Siamese GCN
model is proposed to combine the proximity of higher-order
nodes with GCNs, and then for the graph similarity learning
task, each input graph is applied to higher-order convolutions.

In addition, in recent graph matching networks (3, 4)
image matching task is implemented as an application in
computer vision, where images are transferred to graph
topologies. In particular, the graph nodes converted from the
input image represent the unary descriptors of the extracted
feature points of the image. At the same time, the connections
encode the pairwise relationships among these feature points.
Furthermore, based on the new graph representation, the
image feature matching problem can be reformulated as a
graph matching problem.

4. Methodology

The framework mcmt (7) serves as the foundation for
our work. In this paper, steps 1 and 2 in our framework
are inspired from mcmt, but step 3 is the novelty of our
proposed approach. Specifically, our method includes three
steps as illustrated in Figure 3. First, in the Step (1) vehicle
detection step, vehicles are detected as bboxes by Yolo5
from video images. Then, as mentioned in section 3.1
Multi-Object Tracking (MOT), the bboxes are associated to
generate corresponding single-camera tracklets in Step (2)
vehicle single camera tracking model using FairMOT (48).
We present Step (3) - trajectory clustering in three sub-
steps. In Step (3a) feature extraction, the features of each
bbox are learned using the Siamese Network. Following
this, a graph-based tracklet feature is constructed based on
the graph structure in step Step (3b) graph-based tracklet
feature construction. Finally, in the Step (3c) multi-camera
tracklets matching step, a graph similarity algorithm is
used to determine the similarity between the tracklets. Using
these similarity scores, these tracklets are then matched from
different cameras to create tracklets for each vehicle. In the
rest of this section, we describe each step in detail.
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Input
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Tracklet Vehicle m

Vehicle Single Camera Tracking
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Figure 3. Proposed Architecture. During Step (1) vehicle detection step, the vehicle is first detected. Based on this detection result,
single-camera tracklets are generated in Step (2), Vehicle Single Camera Tracking step. In Step (3a), feature extraction, features are
learned for each bbox using a Siamese network. Then, tracklet features based on graphs are created in Step (3b) Graph Based
Tracklet Feature Construction. In Step (3c), multi-camera tracklets matching, the similarity between tracklets is calculated and used to
match single-camera tracklets to generate multi-camera tracklets.

Step 1 - Vehicle Detection
As described in 3.1 Multi-Object Tracking (MOT), the
vehicles are detected from the video images as bboxes in

this step. Our vehicle detection model is based on YOLOv5
(), which was published in 2020 by Glenn Jocher and
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has been investigated in more than 240 research papers.
YOLOv5 is developed using the PyTorch framework. A
total of 58 open source contributors have contributed to
the development of this latest version of the YOLO object
recognition model. There are some model configuration files
and different versions of this detector, in which we choose the
pre-trained model YOLOv5l6 for our implementation. The
result is presented as a set of vectors as follows:

[tx, ty, tw, th, classProb],

where tx, ty are x and y coordinate of box center in video
frame image and tw, th are the weight and height of this box,
classProb are the class probability.

Step 2 - Multi-Object Tracking (MOT)
This task is also known as single-camera tracking. To
track multiple targets within a single view, we employ
the tracking-by-detection paradigm, which combines frame-
level detection results into tracklets. In particular, we create
tracklets using FairMOT (48). In order to estimate the
position of objects from noisy measurements, it incorporates
a Kalman filtering algorithm as well as a cascade matching
algorithm. As a result of the combination of deep visual
features and moving information as association criteria, it
provides much more information for the association task than
simple bounding boxes. As illustrated in Figure 3, the bboxes
are associated based on this combination of appearance
and moving feature. As a result, the single-camera tracklet
containing the triplet vectors is generated for each vehicle as
follows:

Tid = [Tid,i : (ti, bi, fi)],

where Tid is the tracklet with a given id, ti is the time frame,
bi is a set of vectors of the corresponding bbox as presented
in step (1) vehicle detection, and fi is the appearance feature
of the corresponding bbox.

Step 3a - Feature Extraction
The Siamese Network is used in this step to learn the features
of each bbox in tracklets. This subsection describes the
details of our implemented architecture consisting of two
symmetric CNNs with identical structures and parameters,
i.e., the Twin Networks from Figure 2. Each CNN is
constructed according to the ResNet-50 architecture (49)
with 50 layers (only the convolutional layers and the fully
connected layers are counted). Additionally, to obtain the
output with different dimensions, CNN uses a different
number of residual units (RUs). Accordingly, CNN contains
3 RUs that output 256 feature maps, 4 RUs that output 512
maps, 6 RUs that output 1, 024 maps, and finally 3 RUs
that output 2, 048 maps. ResNet-50 initial parameters are the
same as those of the original ResNet-50 trained on 1, 000
classes of the dataset ImageNet (50). The final structure

of each twin Siamese network comprises the ResNet-50
architecture enhanced with two additional layers of d neurons
fully connected to the ReLU activation function, which are
added at the top.

In the top layer, we obtain a representation of the
feature vector vi for the input image xi with d dimensions.
As a result, different representations (feature vectors) for
each input image are generated. Then, the loss used in
backpropagation can be calculated via these feature vectors.
Network Training: The weights of all pre-trained layers of
the ResNet-50 model are frozen for each Twin Network in
order not to affect the weights that the model has already
learned. In addition, our own 2 dense layers with d neurons
are added to improve the representation. Using Euclidean
distance between output image representations, we train the
Siamese network by using the standard formulation for triplet
loss (51). This loss function considers triplets (xa , xp ,
xn) as input. Here xa is an anchor object, xp is a positive
object (i.e., xa and xp belong to the same Vehicle), and
xn is a negative object (i.e., xa and xn belong to different
Vehicle.Specifically, we randomly select image of vehicle
with the same color of xa). Our goal is to have the vector
representation va be closer to vp than it does to vn. The final
formula is:

L = max(0, m+ ||va − vp|| − ||va − vn||).

During the training process, 100, 000 triplets were
extracted (xa, xp, xn) that served as input to the Siamese
Network. The last layer of each CNN outputs vectors (va,
vp, vn) of length d, which serve as representations for
the input images. It can be summarized that the Siamese
Network is trained simply by entering a triplet of images and
backpropagating the losses through each layer.

Step 3b - Graph-Based Tracklet Feature
Construction
According to the section 2.2 Graph Similarity Learning
Based on Graph Neural Network, we need to construct
the tracklet features in a graph structure so that we can
utilize the association information in the tracklet and compare
the tracklets based on their graph similarity. Specifically,
feature vectors (embeddings) from the Siamese Network are
represented by nodes, while Euclidean distances between
nodes represent edges and a threshold τ determines which
edges remain. Then, using a graph similarity algorithm, the
similarity between tracklets are computed and used for the
next step.

As a result of an empirical tuning proposed in (52, 53),
it was determined that the distance threshold of τ should
be set at 0.5. The human judgment confirmed that 0.5
was the boundary between the same and different images:
distances greater than 0.5 were perceived as different pairs,
and distances less than 0.5 were perceived as identical pairs.

Prepared using TRR.cls



Nguyen et al. 7

Crossroad Zone Camera Time Matching
zis = 1 or 2 - tje < tis False
zis = 3 cj > ci tje > tis False
zis = 4 cj < ci tje > tis False

zis = 1 or 2 - tjs > tie False
zis = 3 cj > ci tjs < tie False
zis = 4 cj < ci tjs > tie False

Table 1. Conflict Table from (7) - In the case of two tracklets
that satisfy three conditions of crossroad zone, camera, and
time, they do not match.

As a result, a person can recognize that two images are similar
but not identical at a distance of 0.5 or more. Additionally,
an experiment with different thresholds is conducted in
Section 5.4 Experimental Results to confirm our decision.
With the aforementioned configuration, tracklet graphs of the
CityFlow dataset (54) have an average of 25 nodes and 188
edges. The visualization for a tracklet containing 15 bounding
boxes is shown in Figure 4.

Step 3c - Multi-Camera Tracklets Matching
Using Graph Similarity
A spatial-temporal filter is applied to increase efficiency
before matching. Since all of the cameras are located on the
main road as shown in Figure 5, we divide the camera image
into four crossroad zones to utilize the spatial information.
Figure 6 show an example of crossroad zone in camera 43:
4 colors are used to divide the different zones (white: zone
1; blue: zone 2; green: zone 3; red: zone 4). Specifically,
zone 3 and zone 4 are connected to the main road where the
cameras are situated. In other words, zone 3 is connected to
the next camera (camera 44), whereas zone 4 is connected to
the previous camera (camera 42).

As shown in Figure 5, the test scenario includes six
cameras with ID numbers ranging from 41 to 46. As a
result, we must match tracklets of cameras whose IDs are
consecutive. The start/end time [ts, te] and start/end zone
[zs, ze] of all tracklets Tid are extracted before matching.
We then filter all tracklet pairs from two cameras with
consecutive IDs using the conflict table in table 1. When the
three conditions of intersection zone, camera, and time in the
conflict table are met, a tracklet pair must not be matched. By
using this procedure, the original search space is significantly
reduced.

To explain this filtering process with the conflict table, we
will use the example of matching tracklets from camera 42
and camera 43. We only need to filter two groups of vehicles
from cameras 42 and 43, as shown in Figure 6:

• Group 1: vehicles that move from camera 42 to camera
43.

• Group 2: vehicles that move from camera 43 to camera
42.

For the purpose of filtering these two groups, spatial-temporal
filtering is employed. Specifically, as shown in Figure 7, we
apply the spatial filtering as follows:

• Group 1: We match the tracklets that end in zone 3 of
camera 42 with those that begin in zone 4 of camera
43.

• Group 2: We match the tracklets that end in zone 4 of
camera 43 with those that start in zone 3 of camera 42.

Following the spatial filtering, the temporal filter is employed
as follows:

• Group 1: We match the tracklets in camera 42 (ending
in zone 3) that have the ending time earlier than the
starting time of pairing tracklets in camera 43 (starting
in zone 4).

• Group 2: We match the tracklets in camera 43 (ending
in zone 4) that have the ending time earlier than the
starting time of pairing tracklets in camera 42 (starting
in zone 3).

A graph similarity algorithm is applied following the
application of the above filters to calculate the similarity
scores between graph-based tracklet features. In order to
achieve the highest level of performance in matching
the input tracklets graphs, the graph similarity algorithm
must capture both global (graph-graph) and local (node-
node) interactions while also taking into account cross-
level interactions between each node of one graph and the
other whole graph. Furthermore, since our application runs
in real-time, the computational cost must be acceptable.
In particular, SimGNN (2), a simplified GNN model that
ignores node features in favor of graph topologies, is used to
learn graph similarity. Specifically, the model have an FPS of
14 using SimGNN. Additionally, most current state-of-the-
art approaches to the MTMCT problem (Vehicle tracking)
work offline, not online. Therefore, to the best of our
knowledge, we are the first to create an approach for handling
Vehicle MTMCT problems with acceptable FPS (14) and
high accuracy (achieving an IDF1 score of 0.75).

5. Experiments and Results

5.1 Dataset and Operation System
To conduct the experiment, we used the CityFlow dataset
(54), which contains multiple street camera images of
the actual scenes in the city. A notable advantage of
CityFlow is that it covers different types of streets, including
intersections, highways, and road extensions. There are 3.25
hours of traffic videos captured from 40 cameras at ten
intersections in both the training and validation sets. The test
set consists of 20 minutes of street video from six cameras
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(a) Tracklet (b) Graph-Based Tracklet Feature

Figure 4. Graph-Based Tracklet Feature Visualization: (a) A tracklet consisting of 15 bounding boxes collected from various video
frames. (b) a graph-based tracklet feature in which nodes are bounding boxes and edges represent the Euclidean distance between
nodes; the darker the edges, the greater the distance.

Figure 5. Camera Locations - Testing scenario includes 6
camera from ID 41 to 46.

situated at six intersections. The training experiments are run
on 4 Nvidia Tesla 32GB V100s and the inference experiments
are run on 1 Nvidia Tesla 32GB V100s.

5.2 Evaluation Metrics

Our method’s performance is evaluated using precision,
recall, and IDF1 (55). IDF1 is defined as the ratio of the
number of correctly identified objects to the number of

Figure 6. Crossroad Zone Visualization of camera 43 from
(7). To utilize the spatial information, the video image is divided
into four zones. Zone 4 and zone 3 connect to the previous and
next camera. Zones 1 and 2 are the exits from the main road.

ground truth and average objects. The IDF1 formula is
presented below:
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Figure 7. The position of camera 43, camera 42 and their
zones. Between cameras 43 and 42, there are two groups of
vehicles moving. The vehicles of group 1 move from zone 4 of
camera 43 to zone 3 of camera 42, while those in Group 2
moves from zone 3 of camera 42 to zone 4 of camera 43.

IDF1 =
2 ∗ TP

2 ∗ TP + FP + FN

where TP is true positive, FP is false positive, and FN is false
negative matching.

5.3 Baselines
As mentioned in section 4. Methodology, mcmt is the
foundation for our work. However, we do not compare
this framework in our experiments since mcmt architecture
is designed for the offline scenario requiring up to hours
for the model training and inference and can not respond
in real-time. The results of our study are compared
with those of other online tracking algorithms, such as
TADAM (56) and BLSTM-MTP (57). The TADAM model
provides a synergistic combination of position prediction
and embedding association. Specifically, the prediction aims
to focus attention on targets and less on distractions by
using attentional modules. As a result of such reliable
embeddings, identity awareness perception can be enhanced
through memory aggregation. By using a novel multi-track
pooling module, the authors of BLSTM-MTP aim to solve
the issue of simultaneously updating all tracks in memory
with a spatial overhead.

5.4 Experimental Results
The performance of our methods has been demonstrated in a
number of ablation studies.

To begin with, we analyze the results using two different
Siamese Network architectures: ResNet and Efficient Net.
According to Table 2, for features of dimension 1024, ResNet
achieves a better result, whereas Efficient Net has a faster fps.
Our next step is to keep the Siamese Network Backbone as
ResNet and increase the dimension of the feature to 2048
and 4096 to determine which is most appropriate for the
feature dimension. Based on the results shown in Table 2, it is
surprising that the feature with dimension 2048 obtained the
best IDF1 value of 0.7521, while the feature with dimension
4096 obtained an IDF1 value of 0.7357. The average FPS of
our system is 14, which is suitable for a real-time scenario.

Method FPS IDF1
Baselines TADAM (56) 13.30 0.5347

BLSTM-MTP (57) 8.55 0.6167

Ours
SimGNN - Efficient Net
(1024-dimension Feature) 16.70 0.6530

SimGNN - ResNet
(1024-dimension Feature) 15.63 0.7316

SimGNN - ResNet
(2048-dimension Feature) 14.03 0.7521

SimGNN - ResNet
(4096-dimension Feature) 12.16 0.7357

Table 2. Result on different Siamese Network backbones and
feature’s dimension based-on SimGNN.

Threshold τ IDF1
0.4 0.7325
0.5 0.7521
0.6 0.7439

Table 3. Result on different Graph Construction thresholds

Similarity Metric IDF1
Cosine Similarity 0.7443
Manhattan Distance 0.7162
Euclidean distances 0.7521

Table 4. Result on different Similarity Metric

Based on an empirical tuning proposed in (52, 53), the
distance threshold τ is set to 0.5 in the construction of
the graph feature. It is necessary, however, to conduct an
ablation study with different thresholds in order to confirm
this decision. In particular, we examine the final results using
thresholds of 0.4, 0.5, and 0.6. In these experiments, the
backbone is a Siamese Network with a 2048-dimension. As
can be seen from Table 3, a threshold of 0.5 yields the
best IDF1 of 0.7521, which is in agreement with previous
work (52, 53).

All above experiments using Euclidean distances to
compare the similarity of graph feature. In addition, we
evaluate the the performance of algorithm of with Manhattan
Distance and Cosine Similarity. In these experiments, the
backbone is a Siamese Network with a 2048-dimension.
The result from table 4 show that algorithm with Euclidean
distances achieve the best IDF1 of 0.7521. With optimal
settings (SimGNN + ResNet + 2048-dimension Feature), the
overall training time for the 3.25-hour train video is 187 hours
and the total inference time for the 20-minute test video is
14.25 minutes.

Baseline Comparison: Some other online tracking algo-
rithms have also been evaluated, we train TADAM (56)
and BLSTM-MTP (57) model on CityFlow dataset for the
comparison. The results of these two algorithms are not com-
parable since they were developed for pedestrian tracking.
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The IDF1 for TADAM is 0.53, while the IDF1 for BLSTM-
MTP is 0.61. Perhaps more importantly, the fps for TADAM
and BLSTM-MTP are respectively 13.33 and 8.55 which are
slower than our algorithm. According to Table 2, our fps is
competitive, while the IDF1 is superior to existing methods.

6. Conclusion and Future Work
As part of an intelligent traffic management system, MTMCT
is a critical task. Using this technology, one can track the
trajectory of vehicles in the city and determine their speed and
travel time to optimize traffic flow. A graph-based tracklet
feature is created based on the association information
between the bboxes of a tracklet. A graph similarity learning
algorithm is then used to determine the similarity value,
which is used to match the single-camera tracklets from
different cameras to form a multi-camera tracklet for each
vehicle. This strategy is used for the online scenario in
which objects are only associated with previous frames.
Since a real-time application requires a fast inference running
time, we customize SimGNN to serve as a learning graph
similarity algorithm. Thus, our real-time approach achieves a
competitive IDF1 score of 0.7521 with an FPS of 14.

In spite of the fact that we are currently focusing on online
vehicle tracking, the proposed method can also be applied to
pedestrian tracking due to the fact that it takes advantage of
body-moment matching information. Specifically, a person’s
body parts can be used as nodes to create a graph-based
structure for that individual. We can then apply a similar
technique to match the person from the previous frame with
the person in the current frame. As a result, one possible
direction for future research is to expand our framework to
include pedestrian tracking.

Although all test set cameras in this study are installed
along the same road, this does not limit the applicability of
this baseline to other, more complex road networks, such as
those with intersections, overpasses, etc. In these instances,
the application of this study can be simply utilized with a
more complex conflict table.
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M. Spies, and R. R. Wagner, eds.). Springer, 2014, pp. 59–73.
doi:10.1007/978-3-319-10085-2\ 5. URL https://doi.

org/10.1007/978-3-319-10085-2_5.
53. Fisichella, M. Siamese coding network and pair similarity

prediction for near-duplicate image detection. International
Journal of Multimedia Information Retrieval. doi:10.1007/
s13735-022-00233-w. URL https://doi.org/10.

1007/s13735-022-00233-w.
54. Tang, Z., M. Naphade, M.-Y. Liu, X. Yang, S. Birchfield,

S. Wang, R. Kumar, D. Anastasiu, and J.-N. Hwang. Cityflow:
A city-scale benchmark for multi-target multi-camera vehicle
tracking and re-identification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019,
pp. 8797–8806.

55. Ristani, E., F. Solera, R. Zou, R. Cucchiara, and C. Tomasi.
Performance measures and a data set for multi-target, multi-
camera tracking. In European conference on computer vision.
Springer, 2016, pp. 17–35.

56. Guo, S., J. Wang, X. Wang, and D. Tao. Online multiple
object tracking with cross-task synergy. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021, pp. 8136–8145.

57. Kim, C., L. Fuxin, M. Alotaibi, and J. M. Rehg. Discriminative
appearance modeling with multi-track pooling for real-time
multi-object tracking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021,
pp. 9553–9562.

Prepared using TRR.cls

https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1007/978-3-319-10085-2_5
https://doi.org/10.1007/978-3-319-10085-2_5
https://doi.org/10.1007/s13735-022-00233-w
https://doi.org/10.1007/s13735-022-00233-w

	1. Introduction
	2. Background
	2.1 Siamese Network
	Architecture
	Network Structure

	2.2 Graph Similarity Learning Based on Graph Neural Network

	3. Related Work
	3.1 Multi-Object Tracking (MOT)
	3.2 Graph Similarity

	4. Methodology
	Step 1 - Vehicle Detection
	Step 2 - Multi-Object Tracking (MOT)
	Step 3a - Feature Extraction
	Step 3b - Graph-Based Tracklet Feature Construction
	Step 3c - Multi-Camera Tracklets Matching Using Graph Similarity

	5. Experiments and Results
	5.1 Dataset and Operation System
	5.2 Evaluation Metrics
	5.3 Baselines
	5.4 Experimental Results

	6. Conclusion and Future Work
	Author Contribution Statement

