
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

3-2019

API recommendation for event-driven Android application API recommendation for event-driven Android application

development development

Weizhao YUAN
Singapore Management University, wzyuan@smu.edu.sg

Huu Hoang NGUYEN
Singapore Management University, hhnguyen@smu.edu.sg

Lingxiao JIANG
Singapore Management University, lxjiang@smu.edu.sg

Yuting CHEN

Jianjun ZHAO

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
YUAN, Weizhao; NGUYEN, Huu Hoang; JIANG, Lingxiao; CHEN, Yuting; ZHAO, Jianjun; and YU, Haibo. API
recommendation for event-driven Android application development. (2019). Information and Software
Technology. 107, 30-47. Research Collection School Of Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4284

This Journal Article is brought to you for free and open access by the School of Information Systems at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at Singapore
Management University. For more information, please email library@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4284&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@smu.edu.sg

Author Author
Weizhao YUAN, Huu Hoang NGUYEN, Lingxiao JIANG, Yuting CHEN, Jianjun ZHAO, and Haibo YU

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4284

https://ink.library.smu.edu.sg/sis_research/4284

API Recommendation for
Event-Driven Android Application Development

Weizhao Yuana,b, Hoang H. Nguyenb, Lingxiao Jiangb,∗, Yuting Chena,∗,
Jianjun Zhaoc,∗∗, Haibo Yud,∗∗

aDepartment of Computer Science and Engineering, Shanghai Jiao Tong University,
P.R. China

bSchool of Information Systems, Singapore Management University, Singapore
cFaculty of Information Science and Electrical Engineering, Kyushu University, Japan

dSchool of Software, Shanghai Jiao Tong University, P.R. China

Abstract
Context: Software development is increasingly dependent on existing li-
braries. Developers need help to find suitable library APIs. Although many
studies have been proposed to recommend relevant functional APIs that can
be invoked for implementing a functionality, few studies have paid attention
to an orthogonal need associated with event-driven programming frameworks,
such as the Android framework. In addition to invoking functional APIs,
Android developers need to know where to place functional code according to
various events that may be triggered within the framework.
Objective: This paper aims to develop an API recommendation engine for
Android application development that can recommend both (1) functional
APIs for implementing a functionality and (2) the event callback APIs that
are to be overridden to contain the functional code.
Method: We carry out an empirical study on actual Android programming
questions from StackOverflow to confirm the need of recommending callbacks.
Then we build Android-specific API databases to contain the correlations
among various functionalities and APIs, based on customized parsing of code

∗Principle corresponding author
∗∗Corresponding author

Email addresses: weizhaoy@163.com (Weizhao Yuan), mr.erichoang@gmail.com
(Hoang H. Nguyen), lxjiang@smu.edu.sg (Lingxiao Jiang), chenyt@cs.sjtu.edu.cn
(Yuting Chen), zhao@ait.kyushu-u.ac.jp (Jianjun Zhao), haibo_yu@sjtu.edu.cn
(Haibo Yu)

Preprint submitted to Information and Software Technology October 16, 2018

snippets and natural language processing of texts in Android tutorials and
SDK documents, and then textual and code similarity metrics are adapted
for recommending relevant APIs.
Results: We have evaluated our prototype recommendation engine, named
LibraryGuru, with about 1,500 questions on Android programming from
StackOverflow, and demonstrated that our top-5 results on recommending
callbacks and functional APIs can on estimate achieve up to 43.5% and 50.9%
respectively in precision, 24.6% and 32.5% respectively in mean average
precision (MAP) scores, and 51.1% and 44.0% respectively in recall.
Conclusion: We conclude that it is important and possible to recommend
both functional APIs and callbacks for Android application development, and
future work is needed to take more data sources into consideration to make
more relevant recommendations for developers’ needs.
Keywords: Android programming, event callbacks, code search, API
recommendation, information retrieval

1. Introduction

Software developments nowadays often need to utilize existing libraries.
Developers, especially those who are new to a development environment,
often need help in learning the capabilities of the environment and getting
familiar with APIs provided in the environment for them to implement
functionalities according to requirements. A prominent example is for Android
application development where developers often need to comply with the
specific framework settings and utilize specific APIs in Android to implement
functionalities for their applications.

Android application developers need to know not only the APIs that can
be invoked for implementing various functionalities, which we call functional
APIs, but also the event callback APIs that are defined and managed by
Android and can be overridden by developers to customize and extend default
behaviours of the Android framework, which we call event callbacks or simply
callbacks. Functional APIs tell developers what to do for implementing a
functionality, while callbacks tell developers where to place the implementation
code. Both kinds of APIs are important for implementing a functionality
properly, especially for an event-driven programming framework, such as
Android, where control flows or call relations among the APIs are not explicitly
presented to developers.

2

To illustrate the differences between functional and callback APIs, Figure 1
shows a code snippet in an Android application for creating an animation of
a rocket launch. The main purpose of the code is to construct an Android
window (by extending Android’s Activity class). When the Android system
executes the application, it implicitly invokes onCreate, which is one of the
Android framework’s application life-cycle event callbacks that are invoked
by the framework when the application is in various states. Application
developers cannot control how a callback can be invoked, but they can
define and control what to be executed inside the callback. In this example,
the body of onCreate loads a rocket image and a sequence of snapshots of
rocket movements (by invoking findViewById, setBackgroundResource,
and getBackground), and when the rocket image is clicked by a user,
it starts to play the sequence of snapshots to simulate the launch of the
rocket (by invoking rocketAnimation.start). The developers need to invoke
setOnClickListener to tell the framework to monitor click actions, but
there is no explicit control flow in the code that links the click-event callback
function onClick with other parts of the code. So, callbacks (e.g., onCreate
and onClick) are in fact a kind of inversion of control, where the control
(i.e., invocation of the functions) is in the hand of the Android framework,
instead of the application code; the control of functional APIs is in the
hand of the application code. A functional API can be invoked to provide
a specific functionality, while a callback can be overridden to contain code
of any functionality. Using both callback and functional APIs appropriately
together are necessary for implementing well-behaving Android applications.

There have been many studies on recommending relevant libraries and
APIs for developers to use when they are writing code according to certain fea-
ture requirements (e.g., [1–4]). Some studies also find or generate sample code
to tell developers how to use (i.e., invoke) the APIs (e.g., [4–12]). However,
as far as we know, those studies mostly focus on recommending functional
APIs that can be invoked by developers. Few studies have paid attention to
the orthogonal need of recommending callbacks that are available from the
programming frameworks and can be overridden by developers. Such a need
can be very common when building applications in event-driven programming
environments, such as the Android framework. Without considering the
implicit control flows and call relations among various event callback APIs,
the recommended functional APIs and the generated sample API usages may
not be fully understandable or reusable by developers.

Based on our empirical study of sampled questions related to Android

3

Figure 1: Sample Functional APIs and Callbacks

development collected from StackOverflow (cf. Section 2), about 3% of the
questions directly ask about situations that are dependent on callbacks, while
overall about 35% of the questions and answers involve overriding callbacks,
in addition to invoking functional APIs.

To fulfill both needs of functional APIs and callbacks for Android ap-
plication development, this paper presents an API recommendation engine
for Android that can recommend both (1) functional APIs for implementing
feature requirements and (2) the callbacks that are suitable to be overridden
to contain the functional code. Thus, we aim to address a common need for
Android application developers: where I should implement this functionality.

A key component of our API recommendation engine relies on the discovery
of descriptive contents for both functional APIs and callbacks. The actual
techniques are based on Android-specific parsing of code snippets and natural
language processing of textual descriptions contained in the public training
tutorials and SDK documents available for Android developers1. Our engine
recommends suitable APIs based on similarity measurements among the
descriptions and developers’ queries in the natural language, which is an idea
similar to many other studies on information retrieval and code search.

We have implemented a prototype of the recommendation engine, named
LibraryGuru2. We have evaluated the recommendation results of the prototype

1https://developer.android.com/
2Available at http://libraryguru.info for testing

4

on realistic Android development questions collected from StackOverflow.
Even though many questions on StackOverflow have gotten answers, we
do not use those answers to build the description databases, so that we
can demonstrate the capability of our techniques for recommending APIs
more clearly without the interfering benefits of historically correct answers
for the questions. Our evaluation on about 1,500 questions shows that
our prototype can recommend both functional APIs and callbacks with
promising results: the top-5 results on recommending suitable callbacks and
relevant functional APIs can achieve up to 43.5% and 50.9% in precision
respectively, and 24.6% and 32.5% respectively measured in terms of mean
average precision (MAP) scores. Although the data we collected and the tool
we built in this paper were for Android application developments in Java, the
idea of facilitating API recommendation by discovering correlations among
functional and callback APIs and textual descriptions may be adapted for
other event-driven programming frameworks, languages, libraries and APIs
(e.g., building iOS apps in Objective-C and Swift, building front-end web
apps with AngularJS in JavaScript, or programming Windows apps in Visual
C++ and C#), and the tool may be used to recommend other libraries and
APIs too if the processed API databases were replaced accordingly.

This paper extends our previous 2-page poster paper for ICSE 2018 [13],
and its main contributions are as follows:

• We empirically identify the need of Android application developers for
locating suitable callbacks to override during development.

• We build Android-specific API description databases indicating the
correlations among various functionalities and APIs in Android, so that
we enable the recommendations for both functional APIs and callbacks.

• We evaluate our tool with about 1,500 questions related to Android pro-
gramming collected from StackOverflow, and show that our techniques
for API recommendation, especially for callbacks, are promising.

The rest of the paper is organized as follows. Section 2 describes our
empirical survey of the questions on StackOverflow and uses an example to
motivate our study. Section 3 relates our study to much related work in the
area of code search and recommendation. Section 4 presents our techniques in
detail. Section 5 presents our evaluation results with respect to StackOverflow
questions and discusses our limitations. Section 6 concludes with future work.

5

2. Motivation

This section presents a simple empirical study, based on questions and an-
swers on StackOverflow, to illustrate how often Android application developers
need help in functional and callback API recommendations.

2.1. The Needs
StackOverflow is a discussion platform where developers confer about

programming skills and software engineering tasks. It allows its users to
ask and answer questions. Accordingly, its voting mechanism is used to
distinguish questions or answers that are good or bad. Users can up-vote
the posts they like and down-vote the ones they dislike. In additional, tags
are used to organize questions into different topics. Users need to attach at
least one tag and up to five tags per question. For example, Figure 2 shows
votes and tags for a sample question. This particular question is tagged with
“android”, “android-activity”, “parent-child”, and “pass-data”; it is likely a
commonly appearing question as it is up-voted by 122 users and starred by
48 users (as shown by the numbers on the left side of the figure).

As of August 2017, StackOverflow exceeded 14 million questions [14]. One
of the most discussed topics is “Android” with more than 1 million questions
[15]. Among the Android questions, there are some typical sub-topics on
“intent”, “spinner”, “activity”, “database”, “storage”, “asynctask”, “dialog”,
“connection”, “location”, etc..

StackOverflow provides APIs for retrieving questions and answers encoded
in the JSON format. We retrieve about sixty questions per query from
StackOverflow following the restrictions of the APIs, and repeat the queries
many times. As the APIs may return many same questions for different
queries, we remove duplicate ones through unique question IDs. Also, many
questions do not have answers or up-votes; or, when there are answers for
a question, no one up-votes any of the answers; or, the answers do not
mention any Android API. We filter away such questions as their answers
are not strong enough to be used as the ground truth to evaluate the results
generated by our API recommendation engine. Finally, 1531 questions having
the “Android” tag are collected.

We notice that about 35% (540) of the questions have one or more answer
that contains names of callback events (e.g., onClick, doInBackground etc.).
Among these questions, about 50 of them explicitly ask when or where to
implement a functionality, which are related to event callbacks.

6

We realize that many developers, especially new ones, tend to ask high-
level questions instead of describing specific issues. New Android programmers
seldom have enough experience to understand the event-driven programming
style in Android and the APIs related to their tasks, especially the event call-
back APIs. They are unlikely to ask event callbacks even when implementing
their functionality requires them to override some callbacks, as implied by
the ten times difference between the two sets of questions above (540 vs. 50).
Therefore, we realize that recommending the necessary event callback APIs
is one of the needs of developers.

2.2. Example
To further illustrate the needs faced by Android application developers,

we show in Figure 2 a snapshot of the StackOverflow question No. 14292398:3

Figure 2: Sample Question: StackOverflow No. 14292398

“How to pass data from 2nd activity to 1st activity when pressed back?”
This question title has two main parts: the first part asks about the func-
tionality of passing data among activities; the second part asks when the
functionality is needed, which is related to certain events in the Android
framework. With the many APIs and event callbacks available, the Android
framework provides developers with the flexibility to implement each of the
two parts in various ways, and the answers to this question on StackOverflow
indeed show this flexibility.

3https://stackoverflow.com/questions/14292398/

7

For the functionality of passing data around, a developer may use the
Intent class and its API putExtra to store the data and send Intent objects
among activities using the startActivityForResult API. Alternatively, the
developer may use SharedPreferences and Editor classes to store the data
in one activity, and use the getSharedPreferences API to retrieve data in
another activity.

For the part on when/where the functionality is needed, a developer may
override the onBackPressed callback to activate the data setting and passing,
and override either the onCreate, onResume, or onActivityResult callbacks,
depending on how the data is passed around, to retrieve the data.

We thus observe that the implementation of many functionalities in
Android applications requires collaborative uses of both functional APIs and
event callback APIs based on the even-driven framework, even though there are
no explicit control flows or call relations among the methods. Recommending
APIs for Android development thus needs to recommend both functional
APIs for invocation and callbacks for overriding.

Our study in this paper aims to achieve this goal. Based on our prototype
used in the evaluation, we are able to relate the functional APIs with suitable
callbacks for various situations, making the API recommendation results more
useful for Android application developers. Specifically for this question, our
prototype recommends some relevant functional APIs and callbacks correctly.
Table 1 shows the recommended functional APIs and callbacks and their
combinations:
• The Intent class was ranked top in its recommendation results;
• The startActivityForResult API was among its top-10 results;
• The onBackPressed and the onCreate callbacks were the top-2 among

recommended callbacks;
• The onActivityResult was among top-5;
• The onResume callback was among top-10; and
• The combined uses of onCreate and Intent and startActivityForResult
were among top-10.

The results show that our prototype is promising in recommending both
functional APIs and callbacks just based on the Android public tutorials
and SDK documents, helping developers to program with an event-driven
programming framework, without the need of the historical answers for the
StackOverflow questions.

8

Table 1: Recommendation Results (i.e., “Rec. Ranks”) for the Sample Question

3. Related Work

Our work is related to numerous studies on code search and recommen-
dation. Recommendation can happen at various stages during software
development and maintenance processes and be useful for various tasks (e.g.,
requirement traceability, feature localization, developer allocation, library
recommendation, API recommendation, code sample recommendation, bug
triage, etc.), using a variety of data (e.g., source code, code change histories,
documentations, discussion forums, bug databases, development contexts,
etc.) [16]. Many of the techniques and tools can be applicable for Android
development too, while our study is unique in the sense that we tailor the
techniques for the needs of event-driven programming for Android applications
in the context of the Android framework.

This section is by no means a comprehensive list of related work on code
search and recommendation. It focuses on API recommendations for Android
development, while explaining the relation between this study with others.

3.1. Code Recommendation for Android Development
Even when scoped for Android development, various code recommen-

dation tasks can be performed. Wu et al. [17, 18] conduct a qualitative
review on tens of code recommendation techniques that may be applicable,
and identify various limitations that may need improvements for Android
development. Among various issues for improvement, they briefly mention
that the component-based and event-driven programming nature of Android
development needs tailored code recommendation techniques to integrate call-
backs into recommendation results properly. We concur with the observation
and think this is important for useful API recommendations for Android and
other event-driven programming frameworks. Thus, we in this paper explore
ways to recommend not only functional APIs but also event callbacks.

9

3.2. Functional API Recommendation
Thung et al. [1] recommend functional APIs based on the similarity

between textual API descriptions and the given textural descriptions of a
feature request. Yu et al. [2] also recommend functional APIs by utilizing
the similarity between more semantic information about APIs and the given
textual queries. Thung et al. [19] recommend Web APIs by taking in a project
profile and ranking the APIs “personalized” for the project. Rahman et al. [3]
utilize the crowdsourced knowledge of StackOverflow to identify keyword-API
associations and construct more informative API descriptions for search.

The essential idea of their work and our paper is all based on a similarity
measurement of certain “descriptions”, while we utilize different data sources
for creating API descriptions and recommend different kinds of APIs. There
are also studies that do not rely on API descriptions and use techniques
different from ours for API recommendation. For example, Xie et al. [20] use
multi-relation models to recommend web APIs. Ramírez [21] develops an
API recommendation system using collaborative filtering along with frequent
itemset mining techniques. Shi et al. [22] utilize project topics and feature-
interface graphs to recommend APIs. McMillan et al. [23, 24] use graph-based
matching to identify relevant functions (not limited to library APIs) and their
usages. Chan et al. [25] optimize the search algorithm for huge API graphs
to improve recommendation results.

3.3. Library Recommendation
Closely related to but different from API recommendation is library

recommendation, which recommends a library (containing many APIs) for
development. For example, Thung et al. [26] recommend libraries by using
association rule mining and collaborative filtering techniques. Chen and
Xing [27] recommend similar libraries for development in different languages.
McMillan et al. [28, 29] recommend similar applications based on a given
application. How they measure “similar” or “different” libraries is then
different from how we match APIs.

3.4. API Documentation Recommendation
Another closely related area of work is to recommend or infer documenta-

tion or properties about the identified APIs and libraries. E.g., Robillard and
Chhetri [30] have developed a tool for information filtering and discovery that
can recommend relevant document fragments to help developers understand
selected APIs better. Guerrouj et al. [31] generate summaries of library

10

identifiers based on relevant posts on StackOverflow. Nazar et al. [32] further
provide a survey of various summarization techniques for various software
artifacts and their applications, including documentation generation.

There are also many studies on inferring the properties of APIs. Robillard
et al. [33] provide a comprehensive survey of over 60 techniques that can infer
different kinds of properties. Our work does not infer API documentation or
properties, but recommends which APIs to use. On the other hand, the two
lines of work may complement each other: API recommendation may utilize
the additional documents and properties generated for each and every API to
find better matching results; documentation and property recommendation or
inference may be more targeted convenient for developers to use if there are
already APIs automatically recommended for them. This combination may
be an aspect that moves research on on-demand developer documentation
[34] forward.

3.5. API Usage Code Generation
It would be even better, after recommending certain APIs to developers,

to recommend or generate and visualize sample code usages of the APIs so
that it may be easier for the developers to understand and reuse the sample
code in their code [4, 5, 8–12, 35–51], and even auto-complete developers’
code or fix bugs using the APIs and proper parameters based on developers’
coding contexts [6, 7, 52–58]. There are studies that aim to achieve these
goals, but they have not been adapted for generating code samples for event-
driven programs, where control flows and call relations are implicit and
functionalities need to be implemented by not just invoking functional APIs
but also overriding suitable callbacks. Although we believe it will be possible
to adapt those techniques for our recommendation results to generate sample
code too, we in this paper have not explored that and leave it for future work.

3.6. Various Data Sources for Recommendation
A variety of data sources may be utilized for code recommendation. Our

study in this paper collects data from Android official tutorials and SDK
documents, which may be arguably the most reliable set of reference materials
for APIs and may help developers understand the design, rationale, usages,
and potential pitfalls of the APIs better. Related work has utilized many
other kinds of data for constructing API description databases (e.g., API
usages in internet-scale source code base, questions and answers from Stack-
Overflow, input/output specifications, execution traces and profiles, etc.).

11

While utilizing more variety of data on the internet may help to improve the
comprehensiveness of the search results, it may also bring many challenges as-
sociated with heterogenous and possibly conflicting data and an overwhelming
number of matching results. Our study in this paper does not address those
challenges, while focusing on demonstrating the importance of recommending
callbacks and using the official Android documents without the need of large
dataset or heavy processing. Our future work will incorporate more data
sources into our recommendation engine and integrate code usage generation
for more comprehensive and usable API recommendation results, towards a
more holistic recommendation system [59].

4. Approach

4.1. Overview
The overall framework of our approach is shown in Figure 3, following

[13]. We know that developers often bring up questions about how certain
functionality can be implemented by using existing APIs. Data sources like
tutorials can give instructions and examples to show how certain APIs are
meant to function, which can be used to answer such questions. Our work
aims at bridging the gap between the questions and the data sources. We
extract APIs and the descriptive texts that are closely related to the APIs,
and recommend APIs whose related descriptions are most similar in semantics
to the input question.

The work flow of our approach consists of two phases. The first phase
refers to the construction of our databases for recommendation, and the
second phase refers to the recommendation of functional APIs and event
callbacks and their combinations.

In the first phase, we build our databases by processing and extracting
information from the data of Android tutorials and SDK reference documents.
Firstly, we collect raw data from Android Tutorials and Guides4 (simply called
Android Tutorial) and Android SDK Reference5 from the official Android
Developers website6, which are in the form of HTML pages. Then we process
the HTML files, discard irrelevant information, and store relevant information
into XML files in our pre-defined structure for further processing. With XML

4https://developer.android.com/guide/
5https://developer.android.com/reference/packages
6https://developer.android.com/

12

Figure 3: The Framework of Our Approach

files of a uniform format, we extract correlations among APIs and descriptive
texts, and store such correlations into our databases for recommendation.

In the second phase, we recommend functional APIs and callbacks from our
databases according to a given query. Our tool takes as input a textual query
which can be a sentence or paragraph to describe the needs to implement
certain functionality, and returns a list of relevant functional APIs and
callbacks accordingly. Before receiving any queries upon boot-up, the tool
first initializes an in-memory search space using the databases set up in the
first phase. For each query, the tool looks up the databases for descriptive texts
that are most similar to the query, and outputs corresponding recommended
APIs to which the descriptive texts are closely related.

4.1.1. Tool Usages
We have implemented a prototype of the approach in a tool, named

LibraryGuru [13]. In addition to the backend command line interface for the
tool, we have developed a web interface for LibraryGuru where users can
easily input their queries in English into the search box on the web interface
to retrieve recommendations.

Figure 4 illustrates the graphical user interfaces of LibraryGuru. Fig-
ure 4(a) indicates the recommended results for a query “send a notification to

13

(a) Sample Query and Recommendation Results (b) Sample Detail Page for an API

Figure 4: LibraryGuru Web User Interfaces

user”. The top-1 result in the “Combined” tab indeed shows how a developer
could implement the functionality with sample code: it can be done by over-
riding the run method in a Runnable thread that builds a notification and
notifies a receiver by invoking the build and notify APIs. A user can also
click the links on the API names for more details. Among the API signature
and sample usages, the API detail page as shown in Figure 4(b) shows the
correlations contained in our backend databases for the Intent class, in the
form of a dependence graph.

4.2. Data Collection and Transformation
In order to recommend related APIs that conform to the queries, we first

build databases that store co-relationship pairs of APIs and descriptive texts
that are related to the APIs.

4.2.1. Data Sources
We choose two data sources, Android Tutorial and Android SDK Reference

from the official Android Developers web site, to build our databases.

• Android Tutorial is the “Training” or “Guides” subsection of the “De-
velop” or “Docs” section on Android Developers web site to introduce

14

(a) Sample Android Tutorial Page (b) Sample SDK Reference Page

Figure 5: Sample Tutorial and Reference Web Pages

developers different Android APIs (e.g., packages, classes, methods
of classes). This Tutorial covers different scenarios and requirements
about almost every aspect of Android development; the Tutorial is
roughly divided into several main sections, and then further divided
into detailed parts, each page only covers some implementations of a
very specific functionality (e.g., Saving Key-Value Data Sets as shown
in Figure 5(a)7). Most pages, according to the topic of the page, tell
readers what APIs to use to achieve a certain goal, and there are often
some snippets for demonstrating the usage of APIs. This feature enables
us to find plenty of co-relationship pairs.

• Android SDK Reference is the reference document for all Android APIs.
In Android SDK Reference, all Packages, Classes, Interfaces and other
items (e.g., Enums and attributes) are indexed by package names.
On each page of a Class or an Interface, it lists all APIs that can
be used by the Class or Interface. Moreover, most of the Packages,
Classes/Interfaces and APIs like methods have short or long descriptive
texts explaining the usage of these API entities, which can be utilized
to create co-relationship pairs. Figure 5(b) shows a sample reference
page for the AnimationDrawable class8, which explains basic usages of
the class and provides a list of attributes and methods available from
the class.

7https://developer.android.com/training/data-storage/shared-preferences
8https://developer.android.com/reference/android/graphics/drawable/

AnimationDrawable

15

We observed that the sentences used in Android SDK Reference are rather
lower-level, containing more technical terms. The descriptive texts in Android
Tutorial, considering its purpose to teach developers to use Android APIs to
implement different functionalities, are more of the same semantics level as
the potential queries that may be asked by developers and supposed to be
handled by our recommendation engine. Therefore, we use the data collected
from Android Tutorial serve as our first-choice data source.

4.2.2. Data Downloading and Filtering
We download all the pages from our two data sources, which are in the

form of HTML files. Among all the downloaded files, we discard the files that
have no use in our case and keep the useful ones. For Android Tutorial pages,
we only take pages that focusing on specific use cases as useful pages, therefore,
pages such as index pages of each main section are filtered. Moreover, as we
aim at APIs, pages that are more concerned about program designs than API
usages are discarded. For Android SDK Reference pages, we remove indexing
pages and other pages that are not in our interest.

4.2.3. Data Transforming and Splitting
With filtered HTML files, we further transform them into XML files which

are easier to manipulate, and split them into even smaller XML files from
which we can extract desired information to build the databases.

As we observe and analyze the filtered HTML pages, we find that the
contents of a single page have a hierarchical structure according to various
semantic levels of the contents, which can also be aligned to various HTML
tags associated with the contents (e.g., contents in <h1> tags often refer to
the headline of the whole page and those in <h2> tags often are headlines
of the sub-parts of the page). Therefore, we parse the HTML file to get all
the contents, and rebuild the Document Object Model (DOM) trees according
to the hierarchy the HTML file is supposed to have. We save the new DOM
tree in an XML file which we refer to as a Raw XML file. A Raw XML file
contains as much raw information as its corresponding HTML file.

Figure 6 is a shortened sample snapshot of the Raw XML files. This exam-
ple is to show how to create screen sliding effects using the ViewPager APIs
as indicated by the <h1> tag, under the overall topic of “Adding Animations”
as indicated by the <h0> tag. This example also has various sub-parts as
indicated by the multiple <h2> and <h3> tags, such as “<h2>Customize the
Animation with PageTransformer” and “<h3>Zoom-out page transformer”.

16

Figure 6: Sample Raw XML File

17

For Android Tutorial, each Raw XML file usually contains an <h1> tag
which is the root of the whole file, and under <h1> tags the file is divided
into several sub-parts which are led by <h2> tags, and those sub-parts may
also be divided into parts led by <h3> tags. The contents of <h1> tag often
summarize the main Android techniques to be explained on this page, while
the <h2> or <h3> tags among its children give a general idea on what each
sub-part focuses on. Each part led by <h2> or <h3> tags may contains
usages of APIs (mostly demonstrated by code snippets) and descriptive texts
with them. We capture various information from the page about the APIs,
such as the links to their detailed SDK documents in the <APIs> and <code>
tags, store the descriptive texts for them inside <p> tags, and collect sample
code uses or configurations of the APIs in the <pre> tags, as illustrated by
various tags in Figure 6.

For Android SDK Reference, the Raw XML is a large XML file which
contains all the data in the SDK documents. In this file, Packages, Classes
or Interfaces and all the APIs such as public methods are stored in different
tags which are organized by the hierarchy they are supposed to have (e.g.,
the direct parent tag of a Class is the tag of the Package of this Class).

To make the data more fine-grained, we want each of the data files to
only contain information about a single certain functionality and very likely
to contain the APIs that are related to this functionality. Therefore, we
further split Raw XML files into smaller files, which we call Raw Doc files. For
Android Tutorial, each Raw XML file is split into several Raw Doc files with
each Raw Doc file only have one sub-part led by <h2> tag. For Android SDK
Reference, each Raw Doc file contains a certain API with its brief description
as well as the descriptions of its Class/Interface and Package.

In our implementation, we use Beautiful Soup [60] to parse all HTML and
XML files, and lxml [61] to create the XML files for our needs. Beautiful Soup
is a HTML and XML file parsing library with simple interfaces for retrieving
and extracting information from DOM trees. lxml is also a useful library for
processing HTML and XML files with stable ability to create XML files.

4.3. Extract Co-relationship Pairs between Texts and APIs
With fine-grained, well-structured raw data files, we are able to extract

information from them and create our databases. We define the entry for
our databases to be a pair of <Description, API >. We extract such
pairs from both Android Tutorial and Android SDK Reference. We define
<Description, API > as an abstract data structure representing a pair of

18

a piece of Description and an API , which we also call a Co-relationship
pair. API refers to a list of functional APIs or callbacks, and Description
refers to the descriptive texts that are related to the APIs in API .

4.3.1. Extracting Co-relationship from Android Tutorial
For every page of Android Tutorial, the main topic of the page is written in

the <h1> tag, and the page is divided by several <h2> tags indicating more
specific sub-topics, and sometimes there are also <h3> tags to further split
the page, therefore we can see a clear hierarchy from the page as mentioned in
Section 4.2. Under every <h2> (or <h3>) tag, the sub-part will show some
information about what functionality can be achieved by using what APIs.
Besides, we also add an <h0> tag when building Raw XML files, which is the
title of the section that contains the HTML page. Therefore, for the APIs
that appear in this part, the corresponding Description would contain the
headline information concatenated together, as shown below:

Description = h0 + h1 + h2 + h3 (ifany) (1)

where “+” refers to concatenation operation of a string.
Further, to make co-relationship between API and Description more

informative, we also manage to find information which is more specific to the
target APIs, which is denoted by Info. Therefore, Equation 1 is refined to:

Description = h0 + h1 + h2 + h3 (ifany) + Info (2)

There are two ways to find APIs and corresponding Info from Android
Tutorial, and then extract Co-relationship pairs. In the pages of Android
Tutorial, there are many texts that directly mention some APIs along with
texts describing the information about the APIs. In addition, there are also
code snippets following some descriptive texts to demonstrate the example of
using certain APIs, and some of the code snippets even have comments on
some key codes inside the snippets which explain the purpose of the line of
code following the comments. Therefore, we can extract Co-relationship pairs
not only from texts in the Android Tutorial, but also from the code snippets.

4.3.2. Extracting Co-relationship Pairs from Texts
In the original HTML files of Android Tutorial, for all the HTML tags

that refer to texts (e.g., <p> tags which contain a paragraph), when an
Android API is mentioned, it always appears with an <a> tag in which the

19

text is the name of the API and the “href” property points to the link of the
API in Android SDK Reference, such as those <a> tags in Figure 6. In this
case, with the APIs mentioned in the texts as API and the texts as Info in
the corresponding Description, we can extract the Co-relationship pairs from
the texts in Android Tutorial.

4.3.3. Extracting Co-relationship Pairs from Code Snippets
On Android Tutorial pages, besides texts describing APIs, there are often

code snippets to illustrate the usages of the APIs, which are stored in <pre>
HTML tags. Some of the <pre> tags contain configurations in the format
of XML to set up properties related to the APIs (e.g., the first <pre> tag
in Figure 6 defines a scrollable text view to display some texts); some other
<pre> tags contain actual Java code that uses the APIs (e.g., the second
<pre> tag contains sample code that shrinks and fades pages when users scroll
between adjacent pages by implementing the ViewPager.PageTransformer
interface). Depending on whether a code snippet contains comments or not,
we have two ways to extract <Description, API> pairs.

We utilize Eclipse JDT [62] to implement a customized Java code parser.
For each snippet in a <pre> tag that contains Java code, we use our parser
to parse the potentially incomplete Java code. With the help of the parser,
we can get the Abstract Syntax Tree (AST) of the snippet, from which we
are able to get all kinds of AST nodes representing different syntaxes.

To extract Co-relationship pairs for functional API s, we first need to
clarify what should be considered as a functional API. With our knowledge
on Android development, the most common case to use APIs is to invoke
some public methods in some instances of some classes or to invoke some
static methods in some other classes. And to invoke methods, developers
often need to create a new instance of certain class with various parameters,
some of which can be pre-defined fields of the class. Therefore, we focus
on looking for the three kinds of APIs mentioned above, which are public
methods, classes, and fields (often constants). With our parser, we can
find three types of AST nodes which are respectively correspondent to the
three kinds of APIs, namely MethodInvocation, ClassInstanceCreation and
QualifiedName. A MethodInvocation node refers to an invocation of a method;
if such node is in the AST of a snippet, it means that some method is
invoked in that snippet, such as the 3 calls to setAlpha in Figure 6. A
ClassInstanceCreation node appears only when a new instance of a class is
created, usually by the new keyword. By looking for these two kinds of

20

nodes, we can get what methods and classes are called or used in the snippet.
QualifiedName refers to a SimpleName (an identifier) with a qualifier in the
form of “Name.SimpleName”, which matches our pattern to look for public
fields (often constants). Intuitively, we only care about public fields that
are used when invoking a method or instantiating a class, therefore, only
QualifiedNames whose parent node is one of the above two nodes are extracted.
The fields MIN_ALPHA and MIN_SCALE in Figure 6 are not public, although
they are constants and used for invoking setAlpha, and we heuristically do
not consider them relevant to setAlpha.

With our parser, we can also find out if there are any comments in the
code snippet, and get all of them if they exist. If a line or several continuous
lines of comments are found in the code, we check whether the comments
are directly followed by any code. If there is any AST node of the three
kinds above, we then collect the APIs represented by those nodes, and use
the comments as the Info in the corresponding Description. For example,
in Figure 6, the second <pre> tag contains multiple comments indicated by
“//”; and then each comment is heuristically used as the description for the
lines of code following the comment. E.g., the comment “// Scale the page
down (between MIN_SCALE and 1)” is the description for the following two
API calls setScaleX and setScaleY.

When no comments are found in the snippet, we find all the APIs of the
three kinds to be the API of the Co-relationship pair. As for the Info in the
Description, we search backward in the DOM tree of the Tutorial page to
find the nearest tag containing textual descriptions (e.g., a <p>, <h3>, or
<h2> tag) as we observe that snippets with no comment inside often follow
some texts describing what the snippets are used for.

To extract Co-relationship pairs for event callbacks, as event callbacks are
methods which are supposed to be overridden by developers to implement
their own functionalities within, we lay our emphasis on finding methods
that are overridden in the code snippets. Based on the specification of
Eclipse JDT, a MarkerAnnotation node in the AST refers to an annotation
in the code. Therefore, to find event callbacks in the snippet, we look for
MarkerAnnotation nodes which represent @Override annotations. For the
event callbacks appearing in a code snippet, we use the contents of the nearest
preceding textual tags as Info in the Description. With the help of our parser,
we can also get the parent node of the overridden method which refers to the
class in which the method is overridden. We can also get what is the extended

21

Class of the class or what Interfaces the class implements, and thus we
are able to identify where the overridden method really comes from. For
example, the second <pre> tag in Figure 6 contains code that “implements
ViewPager.PageTransformer”, which is a Java interface, and thus the public
method transformPage implemented in the code is likely a callback that may
be invoked by the framework at certain situations. Indeed, according to the
tutorial page, application developers do not invoke transformPage directly;
it is invoked by the underlying framework for each visible page whenever
the screen’s transition/scrolling happens. Thus, we identify transformPage
as a callback API, and the nearest <p> tag texts and the <h3> tag texts
(“Zoom-out page transformer” in Figure 6) are used as its descriptions.

Meanwhile, we can also get all the functional APIs used in the callback,
which in turn helps us to infer some correlations between the functional
APIs and the callbacks. For example, the callback API transformPage
in Figure 6 contains calls to various functional APIs, such as getWidth,
setTranslationX, setAlpha, Math.max, setScaleX, etc., which indicates
that these APIs may often be used together. By counting the co-appearances
of one functional API and one callback, we are able to learn how often a
functional API is used in a certain callback. The co-appearance information
helps us to recommend both functional APIs and callbacks in combination.

Due to the semantic limitations of often incomplete code snippets and our
parser, what is returned from the parser are only names of methods, classes or
fields without sufficient type information. Our parser built on top of Eclipse
JDT so far does not guarantee correct parsing of all the code snippets. When
a code snippet cannot be parsed, our parser simply discards it. When a code
snippet can be parsed, our approach tries to get more information about
the APIs used in the snippet: for all APIs extracted from the Tutorial page,
we collect all <a> tags in the page which links to an API in the Android
SDK Reference to build a static lookup table. If any extracted API name
matches the text of any <a> tag in the table, then it is very likely that the
extracted API is the API that links to the <a> tag; therefore, we can get
more information about the API, such as its package name or parameter
types. For example, the first <code> tag in Figure 6 provides a <a> link to
the more detailed page for the ViewPager class, and this information is also
collected into the <APIs> tag in the raw XML file in Figure 6.

For API names that do not have a matching <a> tag, we treat them
differently to build two databases accordingly. One way to deal with these
API names is to remove them from the API list of the Co-relationship pairs,

22

in which we can get a database where all APIs in it have more detailed
information and are all APIs in the Android SDK Reference. However, in
this way the number of pairs extracted is rather too small (it was only 409 in
our initial exploration) for API recommendation, and the average numbers
of APIs of each pair is also not considerable. Another way is to keep these
API names even though the only information about them is the name of the
API, which enables us to extract as many pairs as possible. For example, in
Figure 6, although the class View, the methods setAlpha, setTranslationX,
setScaleX, etc. are used in the code, no explanations or links to other
documents are provided, and we still keep these API names in the database,
and only add descriptions for them if we find relevant descriptions when
processing other tutorial or reference pages. In this way, the scale of the
databases is more than twice as that with the first way: the numbers of
Co-relationship pairs is also up to 1119. Therefore, we adopt the second way
to build each Co-relationship pair. The advantage of this way is even more
significant when we extract Co-relationship pairs for event callbacks as most
callbacks do not have a matching <a> tag in the lookup tables.

4.3.4. Extracting Co-relationship Pairs from Android SDK Reference
For Android SDK Reference, it is simple to get the API and its correspond-

ing description of each Raw Doc file, and the descriptions of its Class/Interface
and its Package. Therefore, the API in the Co-relationship would be the API
in each Raw Doc file, and its corresponding Description is composed of the
descriptions of the API and its Class or Interface and its Package. When
no description can be found for any of the three, we simply use their names
as descriptions. The data scale of Android SDK Reference is quite large,
therefore we only extract Co-relationship pairs for public methods and fields
of Classes and Interfaces, which still gives us a total of 52781 pairs.

According to our knowledge, most of event callbacks regarding Android
development begin with the word “on”, for example, the “onStart()” method
is invoked when an Activity starts. Therefore, to get Co-relationship pairs
for event callbacks, we simply select all pairs in which the API is a method
and its camel case name begins with “on”. In this way, we can get 2469
Co-relationship pairs for event callbacks. The rest 52312 pairs are considered
pairs for functional API s.

23

4.4. Compare Similarity between Query and Description
After we extract all Co-relationship pairs, we serialize them into files to

serve as our databases. When our recommendation tool starts, it will first
load the files and take out all the Co-relationship pairs. Each input query fed
into the tool is first preprocessed with Query Preprocessing. For every query
and Description of the Co-relationship pairs, the tool applies some General
Preprocessing steps of NLP to the texts, and computes the similarity between
them. According to the similarity between the query and all Descriptions in
the databases, the tool recommends APIs in the API of the corresponding
Co-relationship pairs whose Descriptions are most similar to the query.

4.4.1. General Preprocessing
To compare the similarity between a query and the Descriptions stored in

the databases, we preprocess the query and each Description with common
NLP preprocessing steps.

We use bag-of-words [63] model, a simple and popular model to represent
a text as a bag (multiset) of its words, regardless of word order. For each
document, we first remove punctuation and tokenize it, which will break the
text into word tokens. After tokenization, we remove some stop words that
are noisy to the document such as pronouns like “the” and link-verbs like
“are”. Last but not least, we use Porter Stemmer to find stems for each word
and replace the original word with its stem word.

Due to the characteristics of our data, there are always some domain-
specific words in the texts, most of which are inline Java names in the form
of “Camel Case”. For this kind of words, we find them before stemming, and
split them into several words according to the capital letters and add the
words in the document as well as keeping the original word.

All the preprocessing are implemented on top of NLTK [64], a toolkit for
natural language processing in python.

4.4.2. Term Frequency-Inverse Document Frequency
With the help of all the preprocessing, a text document is represented as

a bag of stem words. To take one step further, we use vector space model [65]
and Term Frequency-Inverse Document Frequency (TF-IDF) weighting to
represent each document. According to vector space model, a text document is
represented as a multi-dimension vector of which, in our case, every dimension
represent a unique word in the corpus (i.e., all documents, in our case, all

24

Descriptions in the database) and the value of the dimension is the TF-
IDF of the word in this document. Term Frequency (TF) [66] indicates
how often a term (in our case, a word) appears in a document, which is
calculated by dividing the number of the word by number of all words in
the document. However, term frequency alone can not tell how strong the
relation is between a word and its document. For example, the word “word”
could appear many times in each document, which makes the TF for the
word quite high for every document, but the word itself hardly contains any
useful information. Therefore, we use Inverse Document Frequency (IDF) [67]
to balance. IDF indicates how common or rare a term is across the whole
corpus. For a term t in the corpus C, the Document Frequency (DF) is the
number of documents that contain the term. The IDF can be calculated
in different ways, one of which is: idf(t, C) = log |C|

df(t, C) + 1, where |C|

is the total number of documents in corpus C and dfC(t) is the document
frequency of term t. In our approach, we use Smooth IDF, which adds 1 to
document frequency, as if an extra document was seen containing every term
in the collection exactly once. Smooth IDF can avoid zero division, and is
calculated as follows: Smooth_idf(t, C) = log 1 + |C|

1 + df(t, C) + 1. With TF
and IDF, the TF-IDF weight of a term is computed in the following way:
tfidf(t, d, C) = tf(t, d) · Smooth_idf(t, C).

4.4.3. Cosine Similarity
To compute the similarity between two documents with their corresponding

TF-IDF vectors, we use Cosine Similarity to indicate how similar these
documents are. Cosine similarity measures the orientational differences
between two non-zero high-dimensional vectors, ignoring the differences in
their lengths, which is suitable for our setting where the queries and the API
descriptions in our databases can have very different positive sizes and the
value for each word dimension is non-negative. Also, some studies [68, 69] have
shown that, for the tasks of information retrieval and document clustering,
cosine similarity often performs better than many other metrics, such as Dice
coefficient, Jaccard coefficient, Euclidean distance, etc. Although there exist
potentially better performing similarity metrics, such as TS-SS (the Triangle’s
area Similarity and Sector’s area Similarity [70]), we do not focus onto the
task of selection of “best” metrics in this paper and only leave that for future
work and tool refinements.

25

Given two vectors of A and B of size n, the cosine similarity is represented
as: Cosine_Similarity =

∑n
i=1 Ai ·Bi√∑n

i=1 A2
i ·

√∑n
i=1 B2

i

, where Ai and Bi refer to

the ith element of A and B respectively.

4.4.4. Special Query Preprocessing
Before a query is preprocessed by the General Preprocessing steps, we

first conduct some special processing on the query to de-noise the query and
obtain as much as semantic information from it.

Although we are using stemming to unify the words into a unique root
form in order to match as many as related words between documents, we are
not able to match a word with synonyms. Therefore, we use WordNet [71], a
lexical database for the English language to find synonyms for words selectively
according to their part of speech. We replace the original words with the
synonyms to create new sub-queries and input them into our tool, get all the
results and re-rank them.

4.5. Recommend Functional APIs and Event Callbacks
We recommend APIs based on the similarity score of the query and the

Description documents in our databases. For recommending functional APIs
or event callbacks alone, the Functional API Recommender or Event Callback
Recommender simply finds the most similar Description documents in the
corpus, and returns the APIs in the corresponding Co-relationship pairs.

We also try to recommend both functional APIs and callbacks in which
the recommended functional APIs are supposed to be used, which we call
combined recommendation. For combined recommendation, we utilize the
co-appearance of functional APIs and callbacks mentioned above, which
we refer as co-appearance databases. For a combined recommendation, the
query is first fed into Functional API Recommender to get recommended
functional APIs. We use a Counter to record co-appearing event callbacks:
with each functional API in the recommendation, we try to find all the
co-appearing callbacks in the co-appearance databases, and put them in
the Counter. In the end, if the Counter is not empty, it means that at
least one functional API has co-appearing callbacks in the co-appearance
databases, we select the callback with the highest count, which indicates that
the callback co-appears the most frequent with the recommended functional
APIs. For example, given a query, if the Functional API Recommender
returns a recommendation with three APIs, which are A1, A2, A3, and in the

26

co-appearance databases we find that the co-appearing callbacks of the three
APIs are {C1, C2, C3}, {C1, C3, C4}, {C3, C5} respectively. Then the Counter
would be like {C3 : 3, C1 : 2, C2 : 1, C4 : 1, C5 : 1}, and our recommending
callback would be C3. If no co-appearing callbacks are found in the co-
appearance databases for any of the recommended functional APIs, we then
simply use the Event Callback Recommender to recommend callbacks.

5. Empirical Evaluation

In this section, we evaluate the effectiveness of our recommendation engine
for recommending relevant APIs for a given query in the form of textual
description of a functionality. We are particularly interested in seeing how
callback recommendations affect the overall recommendation results.

5.1. Research Questions
Specifically, we evaluate our techniques and tool for the following questions:

RQ1 What may be the optimal settings for our recommendation engine?

RQ2 What may be the precisions and recalls of our recommendation engine
for both functional and callback APIs?

5.2. Settings
In our evaluation, we evaluate our approach on 1531 questions collected

from StackOverflow regarding Android development that are mentioned in
section 2.1. We randomly pick a portion, a total of 370 questions from the
1531 questions as a test set, to try different choices of technical settings in
our approach and then use the setting with the best results on the test set
for the larger evaluation on all of the 1531 questions.

For each question, we select informative texts from the question as the
query input for our tool, and get the top-N recommendation(s). Then we
compare our recommendations with the actual answers to the question on
StackOverflow that meet the conditions that the vote must be at least 1 and
there are code snippets in the answer with comparable functional or event
callback APIs inside. If one recommendation is matched with any of the valid
answers, then this recommendation is considered matched with the question.

27

5.2.1. Evaluation Metrics
For evaluation of the recommendations of functional APIs or callbacks

separately, we compare the API list of each recommendation with each answer
to the question on StackOverflow: if an API in the recommendation list is
matched with an API in the valid answer, then the API recommendation will
be considered as a matched recommendation. For evaluation of combined
recommendations of functional APIs and callbacks, we compare pairs of
<callback, functional API used in the callback> from the recommendation list
with each answer, if any pair matches some functional API and callback in the
answer, we then consider the recommendation as a matched recommendation.

We use three metrics to measure the performance of our tool, Precision@N,
Mean Average Precision, and Recall@N.

Precision@N (P@N) is calculated by dividing the number of questions
that have at least one matched recommendation among the top-N ranked
recommendations by the number of all query questions. I.e., P@N = |QN |

|Q|
,

where Q is the set of all questions, |Q| is the size of Q, and QN = {q|q ∈ Q∧∃r
in the top-N recommendations for q, s.t., r is a relevant answer for q}. To
determine whether a recommendation r is relevant for q, we assume the
answers with at least one up-vote for q on StackOverflow were correct, and
then, if an API name recommended in r matches an API name used in a
code snippet in the answers for q, we assume r is a relevant answer for q.

Mean Average Precision (MAP) is a popular metric for measuring
recommendation algorithms in information retrieval. To calculate MAP, we
first need to calculate AP (i.e., Average Precision) for each query. Average
Precision takes the ranking position of relevant items in the recommended
item list into consideration. For top-N items in a recommendation list, the
equation of calculating Average Precision for a query q is as follows [72]:

AP =
∑N

k=1 (P (k)× rel(k))
number of relevant documents

, where P (k) is the precision at a
cut-off rank k in the list and rel(k) is a function equaling 1 if the document
at the rank k is relevant to the query and 0 otherwise. The number of relevant
documents refers to the number of all relevant documents in the corpus that
are relevant answers for each query, which is, in our case, the number of all
relevant APIs in the Android framework that can be used for implementing
a functionality described in a query. However, this number is unknown in
situations like ours where we do not have all possible answers for each query
question. To handle such a problem when calculating AP, we optimistically

28

assume that all the top-N items in our recommendation lists that match an
answer from StackOverflow for a query question form the total set of relevant
APIs for the query. Then, we can estimate the AP for each query and the

MAP can be calculated by averaging all APs: MAP =
∑|Q|

q=1 AP (q)
|Q|

, where
Q is the set of all queries.

To further compensate the inaccuracy in measuring MAP due to lack
of ground truths in our situation, we approximate the measurements of
Recall@N (R@N) for all questions, which estimates what is the ratio of all
correct answers that are recommended by our tool. For this calculation, we
also assume that each answer with at least one up-vote on StackOverflow were
correct and that all the correct answers for each query question formed the
total set of relevant answers for the query. Specifically, we calculate R@N as∑|Q|

q=1 |RN(q)|∑|Q|
q=1 |Ac(q)|

, where RN (q) is the set of relevant recommendations contained

in our top-N recommendations for the question q, and Ac(q) is the set of
correct answers from StackOverflow for the question q. Note that, although
many questions do not have any correct answer, even more questions have
more than one correct answer on StackOverflow and each correct answer may
provide more than one code snippet using different APIs for resolving the
query question; thus, ∑|Q|

q=1 |Ac(q)| is often much larger than |Q|.
Among the set of 1531 questions, every question has at least one answer

that provides code snippets containing API usages, which are used to evaluate
our Functional API Recommender. Meanwhile, there are 540 questions whose
answers include snippets that have overridden callbacks, which we use to
evaluate our Event Callback Recommender and Combined Recommender. In
order to match a recommendation r to an answer from StackOverflow, we
also apply the same code parser used for processing tutorial and reference
data (cf. Section 4.3.3) to identify APIs used in the answer and compare
the API names in r against the API names used in the code snippets in the
answer. Due to the same limitations in the parser mentioned in Section 4.3.3,
an answer was simply discarded if the parser cannot parse a code snippet in
the answer post.

5.2.2. Databases
There are many databases to choose for both Functional API Recommender

and Event Callback Recommender, which are different sets of Co-relationship

29

pairs extracted from Android Tutorial or Android SDK Reference in different
fashions. For functional API recommendation, we have three sets from
Android Tutorial, one is extracted from textual contents of Android Tutorial
pages (with 1631 pairs), the other two are extracted from code snippets with
different ways to handle APIs that do not have matching <a> tags in the API
lookup table (409 and 1119 pairs respectively). We also have one set extracted
from Android SDK Reference (52312 pairs). For callback recommendation,
we have two sets, one from code snippets in Android Tutorial (286 pairs) and
one from Android SDK Reference (2469 pairs).

According to our evaluation on the small test set of 370 questions, using the
database with 1119 Co-relationship pairs from Android Tutorial snippets gives
the best result for functional API recommendation and using the database
with 286 Co-relationship pairs that are also extracted from Android Tutorial
snippets gives the best result for callback recommendation. Therefore, we
choose these two as the databases for our Functional API Recommender and
Event Callback Recommender respectively.

5.2.3. Query Inputs
For each question, we have two choices to generate the input query for our

tool. We can directly take the title of the question as our input, or we can
include more information, adding the question body which contains further
explanations of the question title. When adding question bodies, we also have
two choices to reduce noises of the body texts by trimming information about
codes in the bodies. One way is to remove all code snippets in the answer
body, the other is to remove code snippets as well as inline codes in the body.

By evaluating with the test set of questions, we find that adding question
bodies into queries yields better result, which can be explained that with
enriched information the recommender can perform better in finding similar
Descriptions. We also find that the result of removing both code snippets
and inline codes from question bodies is better than that of only trimming
code snippets, which is probably because that information about codes can
introduce much noise for the actual focus and semantics of the queries.

5.2.4. Synonyms
As mentioned in section 4.4, we preprocess queries before tokenizing and

stemming them, which is using synonyms to create similar queries.
By the evaluation with the test set, we find that the result of using

synonyms is actually no better than without using synonyms. The possible

30

reason is that the synonym sets of WordNet were trained on general-purpose
documents and do not apply well to Android development. This calls for
future work to train domain-specific synonym sets for Android.

5.2.5. Stanford Parser for NLP
Sometimes in the queries users may not only ask about the functionality

they require, but also implicitly ask about the callback methods where they
want to implement the functionality by adding clauses like “when/after/before
some event happens”. Therefore, we try to parse the query to find such clauses.
We utilize the Stanford Parser developed by Stanford NLP Group9 to parse
queries. The Stanford Parser is a PCFG (i.e., Probabilistic Context Free
Grammar) parser [73], it can build a phrase structure tree from a sentence,
in which we can easily find all phrases and clauses. If there is any clause
that involves events, we get the clause and mark it as callback query, and the
rest part are marked as functionality query. In this case, the two queries are
handled by Functional API Recommender and Event Callback Recommender
respectively.

When the question body is added into a query, this parsing is disabled due
to time consumption and potential parsing errors of paring multi-sentence
texts. Therefore, the parser is only enabled when the query contains just one
sentence, which, in our evaluation, is often the case when we only use question
titles as input, as question titles usually consist of one sentence. However,
questions asking both functional APIs and event callbacks only take a small
percentage in our question set (only 14 in 370 questions, and 48 in all 1531
questions), which makes whether using Stanford Parser or not hardly a factor
to cause differences in the evaluation results.

9https://nlp.stanford.edu/software/lex-parser.shtml

31

Answer summary for RQ1: Based on a test set data, we observed that (1)
Using tutorial documents are helpful in identifying more accurate correlations
among various APIs and the various functionalities they may be used to
implement, while API SDK documents alone could be too generic and low
level to provide meaningful descriptions that can match functional query
questions from users; (2) Using natural language parsers to enrich query
questions with more detailed functional and event descriptions is useful in
improving query matching; (3) Reducing noise in API databases and query
questions, such as avoid using incorrect synonyms and removing questionable
code in questions, is useful in improving query matching.

5.3. Results on Realistic Questions
According to the discussions about different choices of settings where

we use 370 questions to test, we finally use the following settings for our
evaluation on all of the 1531 questions. On choosing databases, we use the
1119 functional API Co-relationship pairs extracted from Android Tutorial
snippets as our Functional API Database, and the 286 event callback Co-
relationship pairs extracted from Android Tutorial snippets as our Event
Callback Database. On choosing query inputs, we use both the title and the
body but discard both code snippets and inline codes. On whether using
synonyms, we do not use synonyms yielded from WordNet to generate similar
queries, but only use the original query as the query input. On whether using
Stanford Parser, as we choose to add the question body into the query, the
parser is disabled.

Using the above settings, we evaluate our tool on the 1531 questions that
involve functional APIs, 540 of which also involve callbacks. We evaluate the
top-N recommendations of our Functional API Recommender for the 1531
questions, where N is 1, 3, 5 and 10 respectively. We evaluate the top-N
recommendations of our Event Callback Recommender and its combination
with Functional API Recommender for the 540 questions, where N is also 1,
3, 5 and 10 respectively.

The Precision@N scores of our evaluations are shown in Figure 7(a), and
the Mean Average Precision (MAP) scores are shown in Figure 7(b).

According to our evaluation results, the precisions of functional API
recommendation can be up to 50.9% at top 5, and 63.9% at top 10, while
the precision score of event callback recommendation is 43.5% at top 5, and
53.9% at top 10 respectively. The mean average precision scores of our tool
for recommending functional APIs and event callbacks are 32.5% and 24.6%

32

(a) Precision@N

(b) Mean Average Precision

Figure 7: Precisions of Top-N (N=1,3,5,10) Recommendations

at top 5 respectively. Recommending functional APIs have higher precisions
than recommending callbacks, possibly due to the fact that both functional
APIs and query questions have richer descriptions about the functionality
and it is more specific to match a question against functional APIs than to
match callbacks. These results are arguably reasonable, considering that we

33

Figure 8: Recalls of Top-N (N=1,3,5,10) Recommendations

are only using relatively small sets of data sources for recommendation and
that the way we collect questions does not ensure all questions really provide
the queries that our recommendation system could handle.

As for combined recommendations, the precision score is 20.2% at top 5
and 25.6% at top 10, while the mean average precision is 13.1% at top 5 and
12.4% at top 10. A possible key reason for the much lower precisions for the
combined recommendation is the vast number of possible ways how functional
APIs can be used together with callbacks: We observed that many functional
APIs can in fact be used flexibly with various callbacks, as callbacks can be
override to contain almost any code, to implement a functionality in many
different ways; it can be a guessing game when the question itself is unclear
what events or under what situations it wants the functionality. It also
indicates that our algorithm for combined recommendations has much space
for improvement; future work can be considered to improve the matching by
identifying more relevant correlations among functional and callback APIs
from real code bases, and using an interactive mode to suggest developers to
provide more contexts for their questions.

Figure 8 shows the Recall@N scores, based on the estimated calculations
described in Section 5.2.1. The recalls range from 11.9% to 74.9% for Func-
tional API Recommender, 10.1% to 97.1% for Event Callback Recommender,
while ranging lower from 6.9% to 29.6% for their combinations. The recall

34

of top-1 functional API recommendations is slightly higher than that of
callbacks. But the recalls of callbacks become higher when the number N of
recommendations increases, likely due to the fact that the total number of
callbacks is much fewer than functional APIs to choose from.

To give a glimpse of the time efficiency of our tool, for top-5 recommenda-
tion in our evaluation, the average time of generating recommendation results
per query for functional API recommendation, event callback recommendation
and combined recommendation is 41.4ms, 27.4 ms and 83.6ms respectively.

Answer summary for RQ2: Based on the evaluation on the 1531 questions,
we observed that (1) our recommendation engine is efficient in both the phases
of generating API databases and matching queries; (2) the precisions and
recalls of both functional and callback API recommendations are promising;
recommending functional APIs has higher precisions than recommending
callbacks as their functional descriptions are richer and easier to match than
callbacks, while recommending callbacks has higher recalls when the number
of recommendations returned from the engine increases, probably because
there are much fewer callbacks than functional APIs to choose from; (3) the
combined recommendations of functional and callback APIs have much lower
precisions and recalls, due to a vast search space where they can be combined
in many different ways. Future work to utilize more code bases and contexts
where developers give their questions may help improve recommendations.

5.4. Discussion & Threats to Validity
Many choices of design, implementation, and parameter settings in our

API recommendation engine can affect its performance significantly. While
our limited prototype and settings have shown that recommending event
callbacks together with functional APIs can be promising, we still have much
to do to reduce various threats to validity and improve the Android API
recommendation engine for practical uses.

5.4.1. Data Sources
Intuitively, the more data for constructing the API description databases,

the better the recommendation results may become. However, we observed
the contrary results while incorporating Android SDK documents together
with the development tutorials. Particularly, we tried to generate callback
description databases from Android SDK documents for query matching, but
the results were worse than using the callback description database generated

35

from tutorials. Even though SDK documents are of high quality in explaining
low-level technical details, they may be only indirectly related to the functional
requirements faced by developers, and do not fit well with the right semantic
level of the requirements, causing mismatches in the recommendation results.

To avoid potentially conflicting and heterogenous descriptions for APIs,
we in this paper do not utilize “big data” (e.g., existing answers in online
forums such as StackOverflow), as the data we used are considered to be
official Android documents of high accuracy, and may match many realistic
usage scenarios better where many programming frameworks and libraries
may have little “big data”.

Also, the tutorials and references can evolve, just like the APIs themselves
and their usages evolve. It will be interesting future work to utilize differences
among multiple versions of the tutorials and references to recommend APIs,
especially when developers need to replace some APIs used previously with
new ones. Dealing with changing documents with many versions can be more
challenging but helpful for software evolution and maintenance.

All of these imply that the quality and abstraction level of the data
sources play an important role for better recommendation results, likely more
important than the quantity of data. As mentioned in the related work,
utilizing more data more properly will be a long-term progressive goal that
our study in this paper does not address, but will in the future.

5.4.2. Limited Code Parsing and Analysis
Our parser to process code snippets in tutorials, references, and Stack-

Overflow posts is built on top of Eclipse JDT, which may not be able to
parse incomplete code correctly or miss semantic information such as types.
Although we have incorporated heuristics to identify classes, methods, fields
(cf. Section 4.3.3), there are cases where our parser cannot parse a code snippet
or extract API names, and are simply discarded. Future work that utilizes
more adaptive and error-tolerant parsing [74, 75] and semantic parsing and
fixing [76–79] can be useful to overcome such limitations.

There are also different kinds of information available in the Android tuto-
rials and references that our parser cannot process, such as architecture or flow
or state diagrams showing how different Android components are organized or
how some APIs work together, and animations or videos demonstrating the
effects of some APIs. Image and multimedia processing techniques may also
be needed in future to utilize more information to improve the capabilities of
API recommendation engines.

36

5.4.3. API Description Generation
To associate APIs with proper descriptions, we use simple structural

and spatial association rules based on their occurrences in tutorial pages, as
described in Section 4. The rules are still different from the semantics of
APIs, and may potentially have many mis-associations, leading to inaccurate
API recommendation results. It remains a challenging and active research
topic in the areas of natural language processing and information retrieval to
extract semantically related terms. It will be interesting to adapt many of
those techniques to generate more accurate “<Description, API>” pairs.

Further, it is often needed to recommend multiple APIs together for
developers to implement a functionality. Our description generation rules
can generate descriptions for some such correlated APIs based on their co-
occurrences in the HTML pages. However, for such cases, the generated
descriptions may be too low level, explaining the functionality of individual
APIs only, without higher-level, sufficiently summarized information for the
set of APIs as a whole. This is also a semantic gap we observed frequently
between the generated descriptions and the developers’ queries in our study
and many other code recommendation studies. This is also related to a
longtime problem in software engineering for code summarization, which is
interesting future work.

5.4.4. Synonyms, Correlations, and Concept Maps
Replacing synonyms in queries using the WordNet synonym database has

been shown to improve information retrieval results in the other areas of
natural language processing, but not in our setting. This is understandable
as the API descriptions and queries in our setting is specific to Android
development, and many terms are specific to Android, different from the
words in the WordNet. For example, the Intent class in Android is often
used to store data, and may well be treated as a synonym for “data”, which
is very different from its synonyms in the WordNet. The recommendation
results may be improved if we could build domain-specific synonym databases,
correlations among related terms, and even a concept map formed by all of
the directly or indirectly related words and phrases for Android, which may
be done through co-occurrence of words in the Android tutorials and SDK
documents, or statistical models and even deep learning of these materials,
which can be interesting future work.

37

5.4.5. Similarity Measurement
We measure similarity between descriptions and queries using a commonly

known technique based on tf-idf. This is far from perfect, as it has yet
considered semantics of the words and is limited by the factors similar to the
above (improper descriptions, unmatched synonyms, insufficient correlations,
etc.). We could also explore the effects many different variants of similar-
ity measurements, although that may be less an issue if we can construct
description databases of high quality and the right semantic level.

5.4.6. Natural Language Parsing
Many factors mentioned above may require advanced natural language

parsing techniques. Also, for event callback descriptions and queries, it may
be more beneficial if we can identify which phrases in the tutorial and SDK
documents are about events (e.g., when, where, before, after, if, etc. phrases),
and separate the databases for functional APIs and event callbacks. It will
be interesting future work to explore this direction too.

5.4.7. Framework Analysis
The implicit control flows and call relations among functional APIs and

callbacks in a programming framework are also critical for API recommen-
dation, especially when we want to recommend a set of collaborative APIs
together. There are many documents that describe Android framework ar-
chitecture and how different components in Android work together. Also,
the source code of Android SDK contains much rich information on the
relations among APIs. It will be even more exciting future work to discover
such relations from those documents and source code, by combinations of
natural language processing and program analysis techniques, for better
recommendation and code usage generation.

5.4.8. Comparison with Other Search Engines
We note that techniques used in other code search and recommendation

studies may be adapted for recommending event callbacks although they
were designed for functional APIs. In fact, as mentioned in the related
work (Section 3), the essential idea of our techniques is similar to many
other studies in the sense that it performs a similarity comparison between
queries and API description databases; but our study differs in how we
generate the description databases from what data. In particular, we notice
that it is easy for developers to simply use Google Search scoped to the

38

https://developer.android.com/ website to look for potential answers for
their queries. However, those search results contain whole web pages; even
if a web page in the result list contains the needed APIs and callbacks for
developers, it can be too long for developers to read through and identify the
APIs needed for programming (although the web pages are good for learning
when new developers want to understand the semantics of the APIs better).

That said, it remains an interesting study for us to compare the perfor-
mance of many different search engines adapted for event callbacks, and even
better to incorporate the advantages of various techniques together to improve
code recommendation results.

5.4.9. Evaluation Metrics
We have used Precsion@N, Mean Average Precision, and Recall@N to

measure the effectiveness of our tool. The metric calculations rely on iden-
tifying all relevant answers for a query question, but we can only estimate
them based on answers from StackOverflow. Those answers may be incorrect
or incomplete answers due to StackOverflow users of different backgrounds
and expertises and the limitations of code parsing mentioned in Section 5.4.2,
which can affect the construct validity of the metrics. Other metrics [80],
such as fall-out, F-score, discounted cumulative gain, may also be used, but
may face similar issues too. More online metrics involving interactions with
human participants in future work, such as click-through rate, session success
rate may be able to show the practical utility of our tool better.

5.4.10. Evaluation with Human Participants
We have not employed human participants (i.e., actual application devel-

opers) to validate our recommendation engine. On one hand, we considered
that the StackOverflow posts were generated by human and would represent
actual questions faced by real users, and that it would be more objective and
quantified to measure recommendation results with the posts than with hu-
man participants, as the posts are reproducible and there are indicators (e.g.,
up-votes) for the correctness of the answers. On the other hand, measuring
recommendations against the posts is non-trivial either due to the threat to
validity of the evaluation metrics (Section 5.4.9), and evaluation with human
participants would indeed compensate the threat.

We have added Google Analytics10 into the LibraryGuru website [13] to

10https://www.google.com/analytics/

39

anonymously track query inputs from users and their interactions with the
recommendation results (e.g., click-through rate, viewing time with various
result pages). We plan in the future to utilize the website to involve more
actual users to help in evaluating and improving our recommendation engine.

5.4.11. Generalizability
Although we only demonstrated callback recommendation in the context

of Android application development where Java is the main programming
language, we expect our idea and techniques (for discovering correlations
among functional APIs and callbacks and textual descriptions, generating
API descriptions based on code parsing and natural language processing,
and matching functional queries based on some similarity measurements) are
general enough for other event-driven programming frameworks and languages.
We leave a larger scale evaluation of the idea and the techniques for future.

6. Conclusion & Future Work

This paper identifies the need of recommending event callbacks in event-
driven programming frameworks and environments, in particular, Android
application development. In comparison with functional APIs, our study
also shows that callbacks can be more flexible to contain arbitrary code and
their documents are often too low level and generic to be directly useful for
matching functional queries. This implies that callback recommendations
can be a more challenging information retrieval problem than functional API
recommendations. We propose an approach for an API recommendation
engine that can recommend both (1) functional APIs that can be invoked by
developers for implementing certain functionality, and (2) suitable callbacks
that can be overridden by the developers to contain their functional code.
This approach is based on the essential idea that the right “<Description,
API>” relations can be generated from the Android development tutorials and
SDK documents at the right semantic level for the functionality requirements
that are often faced by developers, and then the relation databases can be
used to search for the right APIs for a given functionality query according
to certain similarity measurements. Our prototype implementation, named
LibraryGuru, has been evaluated on about 1,500 questions related to Android
programming collected from StackOverflow, and the results show that our
API recommendation engine can produce relevant recommendations with
promising precisions.

40

Although our study demonstrates that recommendation of event callbacks
is needed and can be done for developers, the design, implementation, evalu-
ation of our API recommendation engine has many limitations so far, such
as limited data sources, straightforward API description generation, simple
similarity measurements, relatively small evaluation, etc. In the near future,
we aim to improve our API recommendation engine by enhancing description
generation and query matching with more accurate domain-specific synonyms,
correlations, and concept maps, and more semantic-aware code and language
parsing and analysis. Particularly for callbacks, we believe that providing
richer documents with more usage scenarios (by the framework and API
developers) in addition to SDK documents, utilizing larger sets of open-source
applications (by a large community of application developers) and contexts
where questions are raised (by individual API client application developers)
can be useful in improving the recommendation results.

Acknowledgements

This work was supported by the 973 Program in China (Grant No.
2015CB352203), the Singapore Ministry of Education (MOE) Academic
Research Fund (AcRF) Tier 1 Grant (Fund No. C220/MSS16C003), and the
National Nature Science Foundation of China (Grant No. 61572312). We
greatly appreciate the supports from our funding agencies and useful feedback
from anonymous reviewers.

References

[1] F. Thung, S. Wang, D. Lo, J. L. Lawall, Automatic recommendation of
API methods from feature requests, in: 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2013, pp. 290–
300. doi:10.1109/ASE.2013.6693088.

[2] H. Yu, W. Song, T. Mine, APIBook: An effective approach for finding
APIs, in: Proceedings of the 8th Asia-Pacific Symposium on Internetware,
ACM, 2016, pp. 45–53. doi:10.1145/2993717.2993727.

[3] M. M. Rahman, C. K. Roy, D. Lo, RACK: Automatic API recommenda-
tion using crowdsourced knowledge, in: IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
Vol. 1, 2016, pp. 349–359. doi:10.1109/SANER.2016.80.

41

[4] X. Gu, H. Zhang, D. Zhang, S. Kim, Deep api learning, in:
Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE), 2016, pp. 631–642.
doi:10.1145/2950290.2950334.

[5] H. Zhong, T. Xie, L. Zhang, J. Pei, H. Mei, MAPO: Mining and rec-
ommending api usage patterns, in: Proceedings of the 23rd European
Conference on Object-Oriented Programming (ECOOP), 2009, pp. 318–
343. doi:10.1007/978-3-642-03013-0_15.

[6] R. P. L. Buse, W. Weimer, Synthesizing API usage examples, in: Pro-
ceedings of the 34th International Conference on Software Engineering
(ICSE), 2012, pp. 782–792. doi:10.1109/ICSE.2012.6227140.

[7] T. V. Nguyen, P. C. Rigby, A. T. Nguyen, M. Karanfil, T. N. Nguyen,
T2API: Synthesizing API code usage templates from english texts with
statistical translation, in: Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE),
2016, pp. 1013–1017. doi:10.1145/2950290.2983931.

[8] H. A. Nguyen, R. Dyer, T. N. Nguyen, H. Rajan, Mining preconditions
of apis in large-scale code corpus, in: Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(FSE), 2014, pp. 166–177. doi:10.1145/2635868.2635924.

[9] E. Moritz, M. L. Vásquez, D. Poshyvanyk, M. Grechanik, C. McMillan,
M. Gethers, ExPort: Detecting and visualizing API usages in large
source code repositories, in: 28th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), 2013, pp. 646–651.
doi:10.1109/ASE.2013.6693127.

[10] M. A. Saied, H. Abdeen, O. Benomar, H. Sahraoui, Could we infer
unordered API usage patterns only using the library source code?, in:
Proceedings of the IEEE 23rd International Conference on Program
Comprehension (ICPC), 2015, pp. 71–81. doi:10.1109/ICPC.2015.16.

[11] H. Niu, I. Keivanloo, Y. Zou, API usage pattern recommendation
for software development, J. Syst. Softw. 129 (C) (2017) 127–139.
doi:10.1016/j.jss.2016.07.026.

42

[12] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J. Zhao, P. Ou, Automatic
parameter recommendation for practical API usage, in: Proceedings of
the 34th International Conference on Software Engineering (ICSE), 2012,
pp. 826–836. doi:10.1109/ICSE.2012.6227136.

[13] W. Yuan, H. H. Nguyen, L. Jiang, Y. Chen, LibraryGuru: API recom-
mendation for android developers, in: 40th International Conference on
Software Engineering (ICSE) Posters, 2018.
URL http://libraryguru.info

[14] StackOverflow, All newest questions, https://stackoverflow.com/
questions (August 2017).

[15] StackOverflow, All newest ‘android’ questions tagged, https://
stackoverflow.com/questions/tagged/android (August 2017).

[16] M. P. Robillard, W. Maalej, R. J. Walker, T. Zimmermann (Eds.), Rec-
ommendation Systems in Software Engineering, Springer-Verlag Berlin
Heidelberg, 2014. doi:10.1007/978-3-642-45135-5.

[17] J. Wu, L. Shen, W. Guo, W. Zhao, How is code recommendation ap-
plied in android development: A qualitative review, in: International
Conference on Software Analysis, Testing and Evolution (SATE), 2016,
pp. 30–35. doi:10.1109/SATE.2016.12.

[18] J. Wu, L. Shen, W. Guo, W. Zhao, Code recommendation for android
development: How does it work and what can be improved?, Science
China Information Sciences 60 (9) (2017) 092111. doi:10.1007/s11432-
017-9058-0.

[19] F. Thung, R. J. Oentaryo, D. Lo, Y. Tian, WebAPIRec: Recommend-
ing web APIs to software projects via personalized ranking, IEEE
Trans. Emerging Topics in Comput. Intellig. 1 (3) (2017) 145–156.
doi:10.1109/TETCI.2017.2699222.

[20] F. Xie, J. Liu, M. Tang, D. Zhou, B. Cao, M. Shi, Multi-relation based
manifold ranking algorithm for api recommendation, in: G. Wang, Y. Han,
G. Martínez Pérez (Eds.), Advances in Services Computing, 2016, pp.
15–32. doi:10.1007/978-3-319-49178-3_2.

43

[21] L. F. H. Ramírez, H. A. X. Costa, M. T. d. O. Valente, A. P. Freire, P. A.
Parreira Júnior, API recommendation system in software engineering,
Master’s thesis, Universidade Federal de Lavras (2016).
URL http://repositorio.ufla.br/jspui/handle/1/11145

[22] W. Shi, X. Sun, B. Li, Y. Duan, X. Liu, Using feature-interface graph for
automatic interface recommendation: A case study, in: Third Interna-
tional Conference on Advanced Cloud and Big Data, 2015, pp. 296–303.
doi:10.1109/CBD.2015.55.

[23] C. McMillan, D. Poshyvanyk, M. Grechanik, Q. Xie, C. Fu, Portfolio:
Searching for relevant functions and their usages in millions of lines
of code, ACM Trans. Softw. Eng. Methodol. 22 (4) (2013) 37:1–37:30.
doi:10.1145/2522920.2522930.

[24] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, C. Fu, Portfolio:
finding relevant functions and their usage, in: Proceedings of the 33rd
International Conference on Software Engineering (ICSE), 2011, pp.
111–120. doi:10.1145/1985793.1985809.

[25] W.-K. Chan, H. Cheng, D. Lo, Searching connected api subgraph via
text phrases, in: Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering (FSE), 2012,
pp. 10:1–10:11. doi:10.1145/2393596.2393606.

[26] F. Thung, D. Lo, J. L. Lawall, Automated library recommendation, in:
20th Working Conference on Reverse Engineering (WCRE), 2013, pp.
182–191. doi:10.1109/WCRE.2013.6671293.

[27] C. Chen, Z. Xing, SimilarTech: Automatically recommend analogical
libraries across different programming languages, in: Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2016, pp. 834–839. doi:10.1145/2970276.2970290.

[28] C. McMillan, M. Grechanik, D. Poshyvanyk, Detecting similar software
applications, in: 34th International Conference on Software Engineering
(ICSE), 2012, pp. 364–374. doi:10.1109/ICSE.2012.6227178.

[29] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, Q. Xie, Exemplar: A
source code search engine for finding highly relevant applications, IEEE
Trans. Software Eng. 38 (5) (2012) 1069–1087. doi:10.1109/TSE.2011.84.

44

[30] M. P. Robillard, Y. B. Chhetri, Recommending reference api documenta-
tion, Empirical Softw. Engg. 20 (6) (2015) 1558–1586. doi:10.1007/s10664-
014-9323-y.

[31] L. Guerrouj, D. Bourque, P. C. Rigby, Leveraging informal documentation
to summarize classes and methods in context, in: IEEE/ACM 37th IEEE
International Conference on Software Engineering (ICSE), Vol. 2, 2015,
pp. 639–642. doi:10.1109/ICSE.2015.212.

[32] N. Nazar, Y. Hu, H. Jiang, Summarizing software artifacts: A literature
review, Journal of Computer Science and Technology 31 (5) (2016)
883–909. doi:10.1007/s11390-016-1671-1.

[33] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, T. Ratchford,
Automated api property inference techniques, IEEE Trans. Softw. Eng.
39 (5) (2013) 613–637. doi:10.1109/TSE.2012.63.

[34] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst,
M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-Vásquez, G. C. Murphy,
L. Moreno, D. Shepherd, E. Wong, On-demand developer documenta-
tion, in: IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2017, pp. 479–483. doi:10.1109/ICSME.2017.17.

[35] M. Kechagia, D. Mitropoulos, D. Spinellis, Charting the api minefield
using software telemetry data, Empirical Softw. Engg. 20 (6) (2015)
1785–1830. doi:10.1007/s10664-014-9343-7.

[36] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, D. Zhang, Mining succinct
and high-coverage API usage patterns from source code, in: Proceedings
of the 10th Working Conference on Mining Software Repositories (MSR),
2013, pp. 319–328. doi:10.1109/MSR.2013.6624045.

[37] H. Zhang, A. Jain, G. Khandelwal, C. Kaushik, S. Ge, W. Hu, Bing
developer assistant: Improving developer productivity by recommending
sample code, in: Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE), 2016, pp.
956–961. doi:10.1145/2950290.2983955.

[38] Z. Zhu, Y. Zou, Y. Jin, B. Xie, Generating api-usage example for project
developers, in: Proceedings of the 5th Asia-Pacific Symposium on Inter-
netware, 2013, pp. 34:1–34:4. doi:10.1145/2532443.2532470.

45

[39] S. Azad, P. C. Rigby, L. Guerrouj, Generating api call rules from version
history and stack overflow posts, ACM Trans. Softw. Eng. Methodol.
(TOSEM) 25 (4) (2017) 29:1–29:22. doi:10.1145/2990497.

[40] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, How
can I use this method?, in: Proceedings of the 37th International
Conference on Software Engineering (ICSE), 2015, pp. 880–890.
doi:10.1109/ICSE.2015.98.

[41] T. T. Nguyen, H. V. Pham, P. M. Vu, T. T. Nguyen, Learning api
usages from bytecode: A statistical approach, in: Proceedings of the
38th International Conference on Software Engineering (ICSE), 2016, pp.
416–427. doi:10.1145/2884781.2884873.

[42] P. Rodeghero, C. McMillan, A. Shirey, API usage in descriptions of
source code functionality, in: 1st IEEE/ACM International Work-
shop on API Usage and Evolution, WAPI@ICSE 2017, 2017, pp. 3–6.
doi:10.1109/WAPI.2017.3.

[43] C. McMillan, D. Poshyvanyk, M. Grechanik, Recommending source code
examples via API call usages and documentation, in: Proceedings of the
2nd International Workshop on Recommendation Systems for Software
Engineering (RSSE), 2010, pp. 21–25. doi:10.1145/1808920.1808925.

[44] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, T. N. Nguyen, Statisti-
cal learning approach for mining api usage mappings for code migra-
tion, in: Proceedings of the 29th ACM/IEEE International Confer-
ence on Automated Software Engineering (ASE), 2014, pp. 457–468.
doi:10.1145/2642937.2643010.

[45] J. Fowkes, C. Sutton, Parameter-free probabilistic api mining across
github, in: Proceedings of the 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (FSE), 2016, pp. 254–265.
doi:10.1145/2950290.2950319.

[46] A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast,
E. Rademacher, T. N. Nguyen, D. Dig, API code recommendation using
statistical learning from fine-grained changes, in: Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), 2016, pp. 511–522. doi:10.1145/2950290.2950333.

46

[47] M. Bruch, T. Schäfer, M. Mezini, On evaluating recommender systems
for API usages, in: Proceedings of the International Workshop on Rec-
ommendation Systems for Software Engineering (RSSE), 2008, pp. 16–20.
doi:10.1145/1454247.1454254.

[48] E. Duala-Ekoko, M. P. Robillard, Using structure-based recommendations
to facilitate discoverability in APIs, in: Proceedings of the 25th European
Conference on Object-oriented Programming (ECOOP), 2011, pp. 79–104.
doi:10.1007/978-3-642-22655-7_5.

[49] Y. Ye, Y. Yamamoto, K. Nakakoji, Y. Nishinaka, M. Asada, Search-
ing the library and asking the peers: Learning to use java apis on
demand, in: Proceedings of the 5th International Symposium on Prin-
ciples and Practice of Programming in Java (PPPJ), 2007, pp. 41–50.
doi:10.1145/1294325.1294332.

[50] K. Yessenov, I. Kuraj, A. Solar-Lezama, Demomatch: Api discovery from
demonstrations, in: Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), 2017,
pp. 64–78. doi:10.1145/3062341.3062386.

[51] M. Ichinco, W. Y. Hnin, C. L. Kelleher, Suggesting api usage to novice
programmers with the example guru, in: Proceedings of the CHI Con-
ference on Human Factors in Computing Systems, 2017, pp. 1105–1117.
doi:10.1145/3025453.3025827.

[52] P. Roos, Fast and precise statistical code completion, in: Proceedings
of the 37th International Conference on Software Engineering (ICSE),
2015, pp. 757–759. doi:10.1109/ICSE.2015.240.

[53] D. Mandelin, L. Xu, R. Bodík, D. Kimelman, Jungloid mining: Helping
to navigate the api jungle, in: Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI),
2005, pp. 48–61. doi:10.1145/1065010.1065018.

[54] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V.
Nguyen, J. M. Al-Kofahi, T. N. Nguyen, Graph-based pattern-
oriented, context-sensitive source code completion, in: 34th Interna-
tional Conference on Software Engineering (ICSE), 2012, pp. 69–79.
doi:10.1109/ICSE.2012.6227205.

47

[55] M. Bruch, M. Monperrus, M. Mezini, Learning from examples to improve
code completion systems, in: Proceedings of the the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering (FSE), 2009,
pp. 213–222. doi:10.1145/1595696.1595728.

[56] S. Chatterjee, S. Juvekar, K. Sen, SNIFF: A search engine for java using
free-form queries, in: Proceedings of the 12th International Conference on
Fundamental Approaches to Software Engineering (FASE): Held As Part
of the Joint European Conferences on Theory and Practice of Software
(ETAPS), 2009, pp. 385–400. doi:10.1007/978-3-642-00593-0_26.

[57] M. Raghothaman, Y. Wei, Y. Hamadi, SWIM: Synthesizing what i mean:
Code search and idiomatic snippet synthesis, in: Proceedings of the
38th International Conference on Software Engineering (ICSE), 2016, pp.
357–367. doi:10.1145/2884781.2884808.

[58] E. C. Campos, M. Monperrus, M. A. Maia, Searching stack overflow for
API-usage-related bug fixes using snippet-based queries, in: Proceedings
of the 26th Annual International Conference on Computer Science and
Software Engineering (CASCON), 2016, pp. 232–242.
URL http://dl.acm.org/citation.cfm?id=3049877.3049902

[59] L. Ponzanelli, Holistic recommender systems for software engineering,
in: 36th International Conference on Software Engineering (ICSE), 2014,
pp. 686–689. doi:10.1145/2591062.2591081.

[60] L. Richardson, Beautiful soup, https://www.crummy.com/software/
BeautifulSoup/ (Aug. 2017).

[61] I. B. Stefan Behnel, Martijn Faassen, lxml - xml and html with python,
http://lxml.de/.

[62] Eclipse Foundation, Eclipse Java Development Tools (JDT), http://
www.eclipse.org/jdt/ (Aug. 2017).

[63] Z. S. Harris, Distributional structure, Word 10 (2-3) (1954) 146–162.
doi:10.1007/978-94-009-8467-7_1.

[64] E. Loper, S. Bird, NLTK: The natural language toolkit, in: Proceedings
of the ACL-02 Workshop on Effective Tools and Methodologies for

48

Teaching Natural Language Processing and Computational Linguistics
(ETMTNLP), 2002, pp. 63–70. doi:10.3115/1118108.1118117.

[65] G. Salton, A. Wong, C.-S. Yang, A vector space model for auto-
matic indexing, Communications of the ACM 18 (11) (1975) 613–620.
doi:10.1145/361219.361220.

[66] H. P. Luhn, A statistical approach to mechanized encoding and searching
of literary information, IBM Journal of Research and Development 1 (4)
(1957) 309–317. doi:10.1147/rd.14.0309.

[67] K. Sparck Jones, A statistical interpretation of term specificity and its
application in retrieval, Journal of Documentation 28 (1) (1972) 11–21.
doi:10.1108/eb026526.

[68] R. Subhashini, V. J. S. Kumar, Evaluating the performance of similarity
measures used in document clustering and information retrieval, in: First
International Conference on Integrated Intelligent Computing, 2010, pp.
27–31. doi:10.1109/ICIIC.2010.42.

[69] S. I. Hajeer, Comparison on the effectiveness of different statistical
similarity measures, International Journal of Computer Applications
(IJCA) 53 (8) (2012) 14–19. doi:10.5120/8440-2224.

[70] A. Heidarian, M. J. Dinneen, A hybrid geometric approach for mea-
suring similarity level among documents and document clustering,
in: IEEE Second International Conference on Big Data Comput-
ing Service and Applications (BigDataService), 2016, pp. 142–151.
doi:10.1109/BigDataService.2016.14.

[71] G. A. Miller, WordNet: A lexical database for english, Communication
of ACM 38 (11) (1995) 39–41. doi:10.1145/219717.219748.

[72] A. Turpin, F. Scholer, User performance versus precision measures for
simple search tasks, in: Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2006, pp. 11–18. doi:10.1145/1148170.1148176.

[73] D. Klein, C. D. Manning, Accurate unlexicalized parsing, in: Proceedings
of the 41st Annual Meeting on Association for Computational Linguistics
- Volume 1, 2003, pp. 423–430. doi:10.3115/1075096.1075150.

49

[74] T. Parr, S. Harwell, K. Fisher, Adaptive LL(*) parsing: The power of
dynamic analysis, in: Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages & Applications
(OOPSLA), 2014, pp. 579–598. doi:10.1145/2660193.2660202.

[75] A. Afroozeh, A. Izmaylova, One parser to rule them all, in: 2015 ACM
International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Onward!), 2015, pp. 151–170.
doi:10.1145/2814228.2814242.

[76] P. Yin, G. Neubig, A syntactic neural model for general-purpose code
generation, in: Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), 2017, pp. 440–450.
doi:10.18653/v1/P17-1041.

[77] L. Dong, M. Lapata, Coarse-to-fine decoding for neural semantic parsing,
in: 56th Annual Meeting of the Association for Computational Linguistics
(ACL), 2018, pp. 731–742.
URL http://aclweb.org/anthology/P18-1068

[78] M. Rabinovich, M. Stern, D. Klein, Abstract syntax networks for code
generation and semantic parsing, in: Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (ACL), 2017,
pp. 1139–1149. doi:10.18653/v1/P17-1105.

[79] E. A. Santos, J. C. Campbell, D. Patel, A. Hindle, J. N. Amaral,
Syntax and sensibility: Using language models to detect and correct
syntax errors, in: IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2018, pp. 311–322.
doi:10.1109/SANER.2018.8330219.

[80] C. D. Manning, P. Raghavan, H. Schütze, Introduction to Information
Retrieval, Cambridge University Press, 2008, Ch. Chapter 8: Evaluation
in information retrieval.
URL https://nlp.stanford.edu/IR-book/

50

	API recommendation for event-driven Android application development
	Citation
	Author

	tmp.1550737655.pdf._iRyb

