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Abstract

The identification of potential offenders, who are more likely to form a new

group and co-offend in a crime, plays an essential role in narrowing down law

enforcement investigations and improving predictive policing. Once a crime is

committed, focusing on linking it to previously reported crimes and reducing

the inspections based on shreds of evidence and the behavior of offenders can

also greatly help law enforcement agencies. However, classical investigative

techniques are generally case-specific and rely mainly on police officers man-

ually combining information from different sources. Therefore, automatic

methods designed to support co-offender research and crime linkage would

be beneficial. This paper proposes two graph-based machine learning frame-

works to address these issues based on a burglary use case, the first being

transductive link prediction, which seeks to predict emergent links between

existing graph nodes (which represent offenders or criminal cases), and the

1The first two authors contributed equally. Zahra Ahmadi conceived the original idea
and experimental settings and directed the project. Hoang H. Nguyen developed the
frameworks and performed most of the evaluation experiments.
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other being inductive link prediction, where connections are found between

a new case and existing nodes. Our experimental results show a prediction

accuracy of 68.5% in co-offender prediction, a 75.83% predictive accuracy

for transductive crime linkage, and up to 74.8% accuracy in inductive crime

linkage.

Keywords: Co-offender prediction, Crime linkage, Repeat offenders,

Transductive link prediction, Inductive link prediction, Deep neural

networks, Machine learning

1. Introduction

Various theoretical and empirical studies indicate that most crimes con-

centrate in time and space according to the so-called “law of crime concentra-

tion” [1]. Furthermore, crime commission and victimization are concentrated

among a minority of a population [2, 3]. The evidence of the concentration of

crime and offenders paved the way for developing increasingly sophisticated

crime prediction approaches.

Predictive policing aims to predict the risk of future crime incidents based

on past crimes and other information [4]. It supports the identification and

prioritization of potential targets for crime investigation through the appli-

cation of advanced analytical techniques [5]. Traditionally, police officers

have used simple, manual approaches to identify hotspots (i.e., areas with

a higher likelihood of crime), for instance, by pinning incidents on maps

[6, 7]. These approaches have been improved through the application of a

variety of quantitative techniques [8] that can handle the crime prediction

problem more efficiently, including various classic machine learning methods
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such as Random Forests [9], Naive Bayes [10] and Support Vector Machines

(SVMs) [11]. As a result of these advances, predictive policing has found

several applications in law enforcement to predict the time and location of

future crimes [12] while generating a lively debate about its effectiveness and

potential biases [13, 14, 15]. Despite the increasing attention to predictive

policing, research has rarely addressed the possibility of identifying potential

offenders and, more specifically, co-offending in crime, that is, when two or

more individuals participate in the same crime [4]. Yet, similar issues are

central to another stream of research that focuses on crime linkage, a process

of associating two or more crimes based on evidence and offender behavior

[16, 17, 18]. However, this approach has largely relied on case-specific quali-

tative information (e.g., identifying the modus operandi of a specific offender

and linking it to criminal events) and has barely evolved to more general

methods [19].

As a crime generally involves an offender and a target and often occurs

in a certain place and time, predictive policing techniques should answer, at

least in part, one or more of the following questions: (1) who will commit a

crime, (2) who will be the victim, (3) what type of crime will be committed,

(4) in what location and (5) at what time will a new crime take place [20].

While most of the previous applications of predictive policing have focused

on the last three questions and most crime linkage approaches have addressed

the first question through case-specific methods, in this paper, we concentrate

mainly on answering the first question about who will offend and with whom

through advanced machine learning. In particular, the present research aims

to address the following research questions:
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RQ1: Knowing a network of offenders and their previous collabora-

tions, can we predict potential future burglary attempts made by ex-

isting offenders in the network?

RQ2: Knowing the historical information of crimes and their offenders,

can we narrow down the inspections of a new case to a list of potential

offenders?

To this end, a comprehensive burglary dataset of more than 30,000 real case

reports is processed and further transformed into a bipartite graph of offend-

ers and criminal cases to build a network of criminals based on the collected

information, which is then used to determine the co-offense likelihood for

known criminals. By proposing different machine learning methods, our goal

is to contribute to predictive policing and crime linkage research with a gen-

eral, parsimonious, and automated approach. In doing so, we first propose

an unsupervised link prediction framework that uses node neighborhoods

and path information to identify possible links based solely on the network

topology. On the other hand, several studies show that if labeled instances

are available, supervised link prediction approaches outperform unsupervised

methods [21, 22]. Although some studies have applied supervised learning

for link prediction (e.g., [22, 23]), the use of these methods for co-offense pre-

diction is still scarce [4]. Moreover, the success of the most used supervised

algorithms usually depends on the data preparation and feature engineer-

ing method that properly describes the phenomenon. Therefore, we attempt

to overcome these limitations by exploring more advanced analytical meth-

ods, specifically deep neural networks. Since we have prior knowledge of the

offending history of criminals, we call this approach transductive link pre-
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diction. Furthermore, we propose an inductive link prediction framework to

assess whether offenders of a newly placed crime can be predicted based on

the textual reports of the crimes presented as node attributes.

The rest of the paper is organized as follows: Section 2 discusses the

related work on machine learning for crime prediction, especially in the case

of burglary. Section 3 introduces the burglary use case and describes the

data process employed to generate network data. Section 4 explains both

transductive and inductive link prediction methods for offenders and crime

linkage. Section 5 presents different baseline approaches, explains the metrics

used for evaluation, specifies the parameter setting for further modeling,

reports the main results of both approaches, and discusses them accordingly.

Finally, Section 6 concludes and proposes future work.

2. Related Work

There is a growing interest in using machine learning in criminology and

crime research, particularly crime prediction [24]. Most methods focus on

predicting the time and/or location of future crimes, while a few studies aim

to find connections and links among the crimes. In this section, we review

the models based on machine learning to deal with the crime linkage problem

and general prediction of the crime.

2.1. Crime Linkage and Machine Learning Methods

Crime linkage studies are generally based on the similarity of criminal

behavior, which relies on three assumptions [25, 26]: (1) criminal behav-

ior is consistent, that is, the same offender will behave similarly over time,

(2) different criminals show distinctive criminal behaviors that are different
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from each other, and (3) criminal behavior is measurable through a direct

relationship and homology between the characteristics of offenders and their

behavior through quantitative models.

The crime linkage problem can be seen as a binary classification task that

aims to find serial crimes committed by the same offenders. In this setting,

it is evaluated whether each of all possible crime pairs represents a serial

crime pair or not. Due to insufficient evidence, it is sometimes difficult to

determine if a crime is serial, so these two-way decisions are prone to error.

A recent study attempted to model the problem with a three-way decision,

where the data space is divided into three possible regions (i.e., positive,

negative, and boundary) based on two thresholds, so those samples that

are difficult to distinguish given the existing information are placed in the

boundary area [27]. Then, they tried to automatically learn the thresholds

of the three-way decisions without the need to establish explicit loss func-

tions. Nonetheless, in many real-world cases, serial crime pairs are much less

common than non-serial crime pairs. To address this challenge, some studies

applied class imbalance algorithms [28]. In a particular robbery case, they

focus on the indistinguishable case pairs at the classification boundary rather

than resampling smaller or larger classes to handle the imbalanced dataset.

Chi et al. also presented a decision system that determined if two robberies

belong to the same series of cases [29]. However, their system is quite limited

in that it considers only robbery cases and requires police officers to manually

mark the characteristics of each case.

Due to the increasing attention to deep learning methods and their promis-

ing results in various applications, a recent study uses an adaptive deep
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Q-learning network with reinforcement learning to develop a robust crime

prediction model [30]. In another work, Wang et al. extended the ResNet

model [31] for spatiotemporal crime forecasting [32]. A crime forecasting sys-

tem using an attention-based sequence-to-sequence model and convolutional

variational autoencoders has also been proposed [33]. Previously, Simonyan

and Zisserman presented a two-stream deep learning approach that learned

video representations by dividing video streams into two components, one

representing a spatial stream and the other a temporal one [34]. They used a

Convolutional Neural Network (CNN) architecture to identify spatial depen-

dencies, further enhanced by a Long-Short Term Memory (LSTM) that cap-

tured temporal patterns. The joint use of CNNs and LSTMs showed highly

complementary behavior in capturing spatial and temporal features for video

classification [35]. Later, Solomon et al. proposed machine learning-based

approaches for crime linkage to parameterize crimes with spatiotemporal in-

formation and automatic and manual language features extracted from po-

lice reports [19]. In doing so, they used two types of samples: positive pairs,

which were pairs of burglaries committed by the same criminal, and nega-

tive pairs, which were pairs of burglaries committed by different criminals.

Then, the model predicted crimes committed by new criminals that were

not observed in the training phase. Ghazvini et al. also proposed a model

that detected serial crimes by isolating short-term repetitiveness using neural

networks [36].

All related work presented so far relates to transductive link prediction,

where approaches have aimed to build new connections between known of-

fenders. Inductive link prediction, by contrast, focuses on cases where new
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offenders are added to the scope. Expanding the analysis beyond the study

of crime, Bojchevski and Günnemann [37] described network nodes using a

Gaussian distribution instead of a simple low-dimensional vector used in pre-

vious studies (e.g., [38]). Then, a dissimilarity measure with respect to the

Gaussian distribution was defined to minimize the heterogeneity of adjacent

nodes: each time a new node was added to the network, the approach would

predict its links to known nodes while minimizing the dissimilarity between

the connected ones.

2.2. Crime Prediction with Machine Learning Methods

Crime prediction methods in the literature have largely ignored the role of

co-offending in committing a crime. Instead, they have focused on modeling

observed crimes spatially and temporally to predict the time and location of

future crimes. In general, crime prediction methods can be divided into two

categories: traditional empirical methods and spatiotemporal methods. Spa-

tiotemporal models, including time series [39] and Kernel Density Estimation

(KDE) [40], are commonly applied for crime prediction and are related to

the crime linkage problem. Variously, traditional methods consider time and

location independently [41], and aim to focus on predicting crime hotspots

and crime risk areas [42]. These methods are less relevant to our study as

they ignore the connection between the crimes. However, we provide a brief

overview of this literature to review the machine learning methods used in

this field.

As for early studies, Olligschlaeger examined using Multi-Layer Percep-

trons (MLP) in GIS systems to predict drug-related calls at 911 call centers

in Pittsburgh, USA [43]. He trained a simple MLP architecture with only
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nine neurons and a single hidden layer on a dataset with three collected fea-

tures indicating the number of calls received in each map cell area related

to weapons, robberies, and assaults. Later, Gorr et al. compared different

regression approaches to predict a set of crime categories using Pittsburgh

data [44]. They ran regression functions of different complexity on the same

data and found that more sophisticated methods outperformed simple time

series. In particular, they found that the predicted mean absolute error was

improved through a smoothing coefficient, that is, by applying more weight

to recent data. However, results from the Prophet model [45] applied to

crime occurrence datasets from three major US cities showed that time se-

ries models could outperform neural networks.

SVMs have shown successful results in various applications, including

hotspot location prediction [46]. Yu et al. compared the competency of

SVMs to other well-established machine learning approaches like Naive Bayes

and Random Forests [47]. They found supportive evidence aligned with the

theory of the recurrence of residential burglary at a particular place. In some

types of crimes, such as burglaries, serial offenders remain in a certain area

due to familiarity with the region, even though the proximity to their home

could compromise their anonymity. Thus, their incidents are concentrated

within a ring-shaped area centered on an outbreak point [48]. Furthermore,

Mohler et al.[49] and Ratcliffe [50] proposed two different temporal crime

modeling approaches and gained insights that validated the well-known claim

that offenses can be driven by the availability of opportunities.

Many of the methods in the literature rely solely on spatial dimensions of

the incidents, including KDE [51]. Originally, Silverman used KDE to divide
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the study area into grids of regular cells and estimated a density value for

each cell via a kernel function that estimates the probability density of crime

incidents [52]. By extending KDE to employ space and time variants, Nakaya

and Yano proposed a crime cluster analysis with a temporal dimension that

can simultaneously visualize the geographical extent and duration of criminal

clusters [40]. Going one step further, Toole et al. used criminal records

to identify spatiotemporal patterns at multiple scales [53]. They employed

various quantitative tools to identify significant correlations across both space

and time in the behavioral crime data.

3. Data Collection and Network Creation

3.1. Burglary Dataset

The dataset used in this study, provided by the Israel National Police

and duly anonymized according to the standards of Israeli national law and

GDPR and further approved by a legal advisor of the Israel National Po-

lice, contained around 30,000 reports of solved burglary cases that occurred

in Israel between 2012 and 2021. The information contained in the reports

included a crime identifier, the respective anonymized identifiers of the of-

fenders, the min-max-scaled site coordinates of the crime that prevent pre-

cise retrieval of the localization of the site, timestamps, and a parameterized

free-text description of the case in the form of an embedding vector, in partic-

ular, a SIF embedding [54]) described next. Even though we used a burglary

database similar to Solomon et al. [19], our study employed a completely dif-

ferent link prediction approach as they looked at the link prediction task from

a classical machine learning perspective, while our work is framed based on
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graphs, where crimes and offenders are nodes represented by features2, hence

explicitly considering the structure of the criminal network and not only the

features of the sample.

Text Embedding: The properties of the crime nodes in our graphs

are transformed into embedding vectors built from the textual description

of the incident. Even though the spatiotemporal information of a crime

is very important for link detection and prediction, we have ignored these

features, which could be seen as a routine independent investigative filtering

procedure. Similar to Solomon et al. [19], we parameterized the textual

information of the crime using Smooth Inverse Frequency (SIF) [54] 3. The

SIF method can encode sequences of words in a sentence or paragraph into

a single vector, mathematically representing the crime description. In short,

this method intelligently combines the embeddings of each word within a

sequence to identify the most relevant ones, a simple semantic text similarity

task that has proven to work well [56].

2While this study uses only criminal characteristics, future research could also incor-

porate criminal characteristics.
3More sophisticated alternatives to text embedding, such as those based on Bidirec-

tional Encoder Representations from Transformers (BERT) [55], have recently been pro-

posed. However, since the optimization of text embeddings as node attributes is not the

main goal of this article, we followed the suggestion of Solomon et al. to use SIF instead

of BERT. Their findings could be due to the fact that the pretrained AlephBert did not

fit the current corpus, while SIF relied on a domain-specific word2vec model trained on

a large corpus of our criminal texts. Since police reports lacked the proper language for-

malism, we believe that the benefits of BERT are diminished, especially when it was not

fine-tuned to our data. Further elaboration on text embedding optimization is suggested

for future work.
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Figure 1: The crime-offender bipartite network4. Green circles and orange triangles repre-

sent crime cases and offenders, respectively. Edges indicate when an offender participated

in a crime.

3.2. Generated Networks

Three different networks were generated based on the original burglary

data and text embeddings, including:

1. A crime-offender network (Figure 1) with 41, 324 nodes and 34, 156

edges, where nodes represent both crimes and offenders, and links in-

dicate whether an offender participated in a crime. This network is a

bipartite graph with two different types of nodes later divided into two

networks for further analysis.

2. An offender network (Figure 2), where the nodes represent the offend-

ers and the links indicate whether two offenders are involved in one or

more burglary cases. To generate the offender graph, we used the orig-

inal undirected crime-offender network to connect two offender nodes

4Snapshots are taken using our open source network analysis tool, which can be down-

loaded from https://github.com/erichoang/criminal-network-visualization. We

present and describe the details of the tool in Section 7.1.
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Figure 2: The offender network, in which nodes represent offenders, and edges indicate if

two offenders share a crime.

Figure 3: The crime network. The nodes represent placed crimes and the edges indicate

whether two crimes share an offender.

each time they shared a crime and then filtered the crime nodes. The

offender network resulted in a total of 17, 232 nodes and 21, 302 edges.

We used this dataset in the link prediction experiments as the net-

work is large enough for this purpose. Furthermore, we specifically

conducted the unsupervised transductive link prediction experiments

on this dataset as we only accessed the network structure and not ad-

ditional embedded attributes for offenders.

3. A crime network (Figure 3) with nodes representing offenses and edges

indicating the number of shared offenders between the crimes. This net-
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work included 23, 380 nodes and 42, 604 edges. It was used for link pre-

diction experiments, especially inductive link prediction, since nodes,

i.e., crime cases, consisted of embedded descriptions as attributes.

4. Link Prediction Methods

We propose two approaches for link prediction: transductive link predic-

tion (Section 4.1), which considers prior knowledge of the offender network to

predict emerging links between existing nodes (i.e., offenders), and inductive

link prediction (Section 4.2), where the links of a new crime to existing crimes

can be predicted based on available meta-information (i.e, node attributes).

4.1. Transductive Link Prediction

In principle, all link prediction methods work by assigning a score(u, v)

to pairs of nodes (u, v) and then choosing the top-scored pairs as predicted

links for u [57]. The score value is computed based on the input network

and often measures the proximity or similarity between u and v. Different

measures of similarity have been proposed, the most relevant in the literature

and applicable for crime prediction being the following:

• Jaccard similarity measures the probability that both u and v have

past connections to individual f . For this, an individual f is randomly

selected from a set of all individuals with past connections to either

u or v. The probability is then calculated as the ratio of the num-

ber of individuals that both u and v have observed interactions with

and the number of individuals with whom either u or v have observed
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interactions. In particular:

Jaccard(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

, (1)

where Γ indicates the neighborhood function of a node.

• Adamic Adar similarity [58] is a variant of the Jaccard ratio, where

similarity is determined as a weighted count of the individuals with

whom both u and v have had interactions. Each individual is weighted

by the inverted number of all other observed individuals:

Adamic(u, v) = Σz∈Γ(u)∩Γ(v)
1

log |Γ(z)|
. (2)

In this setting, a popular individual with many connections other than

to u and v contributes less to the similarity ratio than an individual

f who only has past connections to u and v. It is reasonable since, in

this case, f could probably be the driver of the relationship between u

and v.

• Preferential attachment similarity [59] follows what is called the

Rich-Get-Richer phenomenon. This means that the probability that u

will connect with v in the future is proportional to the popularity of

these two individuals. In its simplest mathematical form, this measure

is determined by the product of the number of other individuals with

whom u has had interactions and the same number with v:

Preferential(u, v) = |Γ(u)||Γ(v)|. (3)

• Resource allocation similarity [60] aims to measure resources flow-

ing from u to v through other people with whom u and v have connec-

tions. It has a very similar mathematical formulation to the Adamic
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Adar similarity, except that the number of other individuals is now

weighted by their individual interactions:

Resource Allocation(u, v) = Σz∈Γ(u)∩Γ(v)
1

|Γ(z)|
. (4)

• Soundarajan-Hopcroft similarity [61] is an improved variant of

Adamic Adar similarity that considers information about the commu-

nity structure of the input network. The rationale is that the more

community members the two individuals have in common, the more

likely they are to form some sort of connection. Mathematically, the

score is determined by the number of individuals both u and v have

interacted with, plus the number of communities they both belong to:

Soundarajan Hopcroft(u, v) = Σz∈Γ(u)∩Γ(v)
f(z)

|Γ(z)|
, (5)

where f(z) equals 1 if z belongs to the same community as u and v.

These measures are based on the connections between individuals in the

network, so they can be improved by considering the attributes and behavior

of individuals when calculating the similarity values. Several works have

leveraged this approach. The tensor factorization method, for instance, has

gone hand in hand with a high computational cost considering its technical

complexity, which is why we have discarded it in this study.

4.1.1. Prediction by Transductive Algorithm

Our approach for similarity-based transductive link prediction is simple

yet effective. For each pair of nodes, (v, u), in the node set V , we first cal-

culate their similarity sim(v, u) using one of the following similarity metrics:
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Algorithm 1 Transductive Link Prediction Algorithm

Require: G = (V , E), k, sim ▷ sim represents the similarity metric function

Calculate sim(u, v),∀u, v ∈ V

pred← []

for v ∈ V do

for u ∈ select-top(sim(v, ·), k) do ▷ select the top k similar nodes

pred← pred + (v, u)

end for

end for

Return pred

the Jaccard coefficient, Adamic-Adar index, resource allocation index, pref-

erential attachment or the Soundarajan-Hopcroft coefficient. Then, for each

node, the top k similar nodes regarding the computed similarity metric are

selected, which indicates the target nodes of the outgoing edges of that par-

ticular node. The pseudo-code of our transductive approach is presented in

Algorithm 1.

4.2. Inductive Link Prediction

In attributed graphs, both the network structure and attribute informa-

tion can be used for link prediction. An attributed graph is represented

by G = (V , E ,X ), where V = {v1, ..., vn} represents the node set, n = |V|,

E ⊆ V × V the edge set, X = {x1, ..., xn} the attribute feature matrix,

xi ∈ Rm the attribute feature vector of node vi and m the number of at-

tributes in the graph. Given a graph G and a pair of nodes (vi, vj), the goal

of link prediction is to estimate the likelihood of a link exists between vi and
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vj. Most current methods focus on transductive link prediction, where both

nodes vi and vj are already known. However, in many real-life situations,

inductive prediction is also required considering new nodes, where attribute

information is available, but one or both of the nodes vi and vj have not been

observed, at least during the training process.

To overcome this limitation, we implement an attributed graph embed-

ding method called Dual-Encoder graph embedding with ALignment (DEAL)

[62], which can be used for both inductive and transductive link prediction.

This framework embeds the graph of existing nodes in the vector space and

extracts its structure information (i.e., structure-oriented node embedding).

It then computes an embedding vector for new query nodes where the only

information available is their attributes (i.e., attribute-oriented node embed-

ding), which is ultimately compared to the previously computed structure

embedding. In particular, the DEAL approach involves three main compo-

nents, including two types of node embedding encoders and one alignment

mechanism. The first encoder aims to output the attribute-oriented node

embedding (Ha), while the second relates to the structure-oriented node em-

bedding (Hs): Ha computes the embedding vectors with attributes of the new

nodes and Hs computes the node embedding vector that preserves the struc-

ture information. Finally, the alignment mechanism is employed to contrast

the two embedding vectors and build the connections between the attributes

and the links. Both encoders are updated during training, so the generated

embeddings are aligned.
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4.2.1. Attribute-Oriented Encoder

The attribute-oriented encoder Ha ingests an attribute vector xi from

node vi and generates a node embedding zai = Ha(xi). We used an MLP

with a nonlinear activation layer to learn Ha:

Ha(xi) = σ(W2
a(σ(W

1
axi + b1a)) + b2a), (6)

where W 1
a , W

2
a , b

1
a and b2a are hyperparameters of the model and σ(.) is the

exponential linear unit. We opt for a simple MLP approach instead of com-

plex neural networks since well-known Graph Neural Networks (GNN) mod-

els such as Graph Convolutional Networks (GCN) [63] and Graph Attention

Networks (GAT) [64] suffer from scalability limitations (see Section 5.2).

4.2.2. Structure-Oriented Encoder

The structure-oriented encoder Hs generates node embeddings that only

preserve the structural information of the graph G without regard to the

attributes of the nodes. We use the one-hot encoding of the nodes IV =

{I1, ..., In} as the input of the encoder and further map node vi to its node

embedding vector zis = Hs(Ii). We then employ a linear model to compute

the encoder Hs:

Hs(Ii) = g(Ws)Ii, (7)

where g(.) is used to re-parameterize Ws and accelerate the convergence of

stochastic gradient descent optimization.

4.2.3. Alignment Mechanism

We align the embeddings of the two types of encoders with learning the

connections between the node attributes and the graph structure. In doing
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so, we apply a ranking-motivated loss function that learns the graph embed-

ding through ranking, which can help capture the relationships between each

pair of nodes in the training samples. Inspired by the contrastive loss [65]

that maps similar input samples to nearby points in the output vector space

and dissimilar samples to distant points, we map the linked graph nodes to

close points in the output vector space and the unlinked nodes to points

far apart. However, it should be considered that the unlinked nodes (nega-

tive pair-wise samples) have different distances in the graph. Consequently,

we employ the following loss function for a given mini-batch of node pairs

B = {(vp1 , vq1), ..., (vpk , vqk)}, where pi ̸= qi and i ∈ [1, k]:

LB(Z) =
1

|B|
Σ(vpi ,vqi )∈B[(1− yi)α(vpi , vqi)ϕ1(−s(zpi , zqi)) + yiϕ2(s(z

pi , zqi))],

(8)

where s(., .) represents a similarity function that compares two node em-

beddings (zpi and zqi) and yi the link relation label (i.e., yi = 1 if two nodes

are connected). In this paper, we use the so-called cosine similarity function.

Further, α represents a weight function to measure the importance of negative

samples with different distances. We can define it as α(vp, vq) = exp β
dsp(vp,vq)

,

where dsp(.) denotes the shortest path between two nodes and β > 0 is a hy-

perparameter. If two nodes are unreachable, then dsp(vp, vq) = ∞. Both ϕ1

and ϕ2 are derived from function ϕ(.), which considers different hyperparam-

eters to link regularization. We then use the generalized logistic loss function

(ϕ(x), with γ > 0 and b as loss margin parameters) to tune regularization:

ϕ(x) =
1

γ
log(1 + exp−γx+b). (9)

Instead of optimizing LB(Zs) and LB(Za) independently, we design a
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Algorithm 2 Inductive Link Prediction Algorithm (DEAL)

Require: Graph G = (V , E ,X ), a set of mini-batches B, loss weight θ

for each batch in B do

Zs ← Hs(IV)

Za ← Ha(X )

L ← θ.[LB(Zs),LB(Za),Lalign(Zs,Za)]

Update Hs and Ha with stochastic gradient ∇L

end for

Update Zs and Za via Hs and Ha

Calculate score(u, v),∀u, v ∈ V via Equation 12

joint alignment method that aims to maximize the similarity between zpis

and zqia of two linked nodes vpi and vqi :

L(Zs,Za) =
1

|B|
Σ(vpi ,vqi )∈B[(1−yi)α(vpi , vqi)ϕ1(−s(zpis , zqia ))+yiϕ2(s(z

pi
s , z

qi
a ))].

(10)

The overall objective of our inductive model follows:

L = θ1LB(Zs) + θ2LB(Za) + θ3Lalign(Zs,Za), (11)

where θ1, θ2, θ3 are hyperparameters to parameterize the weights of different

losses further.

4.2.4. Link Prediction

To determine if there is a link between two nodes vp and vq exists, we

calculate the following score:

score(vp, vq) = λ1s(z
p
s , z

q
s) + λ2s(z

p
a, z

q
a) + λ3s(z

p
s , z

q
a), (12)
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where λ1, λ2, λ3 are hyperparameters of the similarity score. In inductive

link prediction, the link zqa to a new node vq is calculated by setting λ1 = 0.

Algorithm 2 summarizes the steps in the DEAL framework. DEAL can also

perform transductive link prediction by specifying λ1 to a non-zero value.

5. Experimental Analysis

The performance of link prediction methods is often evaluated by their

ability to retrieve links hidden on purpose. Accordingly, we first conceal a

small portion of the links for a given individual and then use the prediction

methods to identify potential hidden links. Section 5.1 and 5.2 discuss our

findings on transductive5 and inductive6 link prediction experiments, respec-

tively.

5.1. Transductive Link Prediction Results

Figure 4 shows an example of our transductive link prediction using the

Jaccard similarity measure. Figure 4a shows the original network where two

connected nodes, OID#179 and OID#220, are randomly selected. To eval-

uate our link prediction algorithm, we remove the existing links using the

available options in our visualization platform. Then, we apply the trans-

ductive link prediction with Jaccard similarity sequentially on OID#179 and

OID#220. The method returns the top k likely emerging edges (here, top

three). Figure 4d shows that the method can correctly predict the links

between the two nodes.

5https://github.com/erichoang/criminal-network-visualization
6https://github.com/erichoang/criminal-link-prediction
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(a) (b) (c) (d)

Figure 4: (a) Original offender network and two randomly selected nodes (OID#179

and OID#220), (b) Modified network by removing the links between the two selected

nodes, (c) Transductive link prediction on OID#179 in a modified offender network, (d)

Transductive link prediction on both OID#179 and OID#220 in the modified network.

The link prediction method uses the Jaccard similarity measure, and the predicted links

are the yellow-dash lines.

Table 1 reports the results of the transductive link prediction on the

offender network by randomly selecting a sample of links to be removed from

the original network (1%, 5%, 10%, and 15%). The link prediction scores

between the central nodes and their 2-hop neighbors (the so-called candidate

edges) are computed for each removed link based on the respective similarity

measure. For each setting (determined by the specific similarity measure and

the percentage of links removed), accuracy will naturally increase if we search

for the correct link among more potential links (i.e., larger k). Moreover, for

a fixed similarity measure and a fixed k, we can see the accuracy degrades

with more links removed as the network structure changes more and we have

less knowledge between offenders. The only exception is the Preferential

attachment measure when the removed links increase from 1% to 5%, where

accuracy improves slightly. It can also be observed that Jaccard similarity

achieves the best accuracy on top-1 predicted links for all cases (i.e., offender
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Link Removal Top-k Jaccard similarity Adamic Adar Preferential attachment Resource allocation Soundarajan-Hopcroft

1%

1 61.78 (1) 61.03 (3) 28.69 (5) 60.84 (4) 61.12 (2)

3 67.10 (4) 67.38 (1) 46.92 (5) 67.38 (1) 67.20 (3)

5 68.32 (2) 68.32 (2) 58.32 (5) 68.32 (2) 68.60 (1)

5%

1 58.69 (1) 54.84 (3) 28.50 (5) 54.73 (4) 56.64 (2)

3 65.87 (2) 65.52 (3) 47.1 (5) 65.50 (4) 66.34 (1)

5 67.49 (4) 67.56 (2) 59.38 (5) 67.54 (3) 68.03 (1)

10%

1 53.1 (1) 48.50 (3) 27.67 (5) 48.37 (4) 50.23 (2)

3 62.30 (1) 60.85 (3) 46.41 (5) 60.81 (4) 62.03 (2)

5 64.11 (2) 63.70 (3) 57.87 (5) 63.66 (4) 64.35 (1)

15%

1 48.36 (1) 43.59 (3) 27.02 (5) 43.47 (4) 45.24 (2)

3 58.78 (1) 57.27 (3) 45.54 (5) 57.18 (4) 58.20 (2)

5 60.96 (2) 60.64 (3) 56.10 (5) 60.59 (4) 61.02 (1)

Table 1: Accuracy of transductive link prediction on five different similarity measures and

their ranking. The best results are in bold.

network with different ratios of removed links). Finally, the Soundarajan-

Hopcroft similarity measure slightly improves the Jaccard similarity results

on the top five predicted links in all test cases.

5.2. Inductive Link Prediction Results

In this experiment, we train the DEAL framework on the crime network.

We first explain how data is split in Section 5.2.1, and then we describe the

comparison methods and their settings in Section 5.2.2 and 5.2.3, respec-

tively. Performance is measured by known metrics such as the Area Under

the Receiver Operating Characteristic Curve (ROC-AUC) and average preci-

sion at the top-ranked predicted link level [57]. Results are finally discussed

in Section 5.2.4.

5.2.1. Data Splitting

We split the input burglary network into three subsets:
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1. Training set: Burglary cases before 2019.01.01 (75% with the number

of nodes being 17, 531)

2. Validation set: Burglary cases from 2019.01.01 to 2020.01.01 (15% with

3, 488 nodes)

3. Test set: Burglary cases after 2020.01.01 (10% with 2, 361 nodes)

For the data processing and the creation of the subnetworks, we only

consider the training set that does not include the nodes and edges of the

validation and test sets. The validation set is used for fine-tuning the DEAL

hyperparameters, while the test set is left for evaluation purposes. For all

subsets, we consider the text embeddings of the burglary case summaries as

node attributes. We run the experiments in two versions:

• Training with transductive validation, where both training and

validation sets are combined in the training process. In other words,

the validation set is a subset of the training set, but there are no links

between its nodes and the nodes of the training set.

• Training with inductive validation, where the network used in

the training process is completely independent and different from the

validation set network.

5.2.2. Methods of Comparison

We implement several baselines and state-of-the-art methods to compare

their performance against our method on the burglary dataset. For the in-

ductive link prediction, the following comparison approaches are considered:

• Radius Neighbours: This simple implementation predicts which

newly-added nodes will be connected to their nearest neighbor nodes
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within the ball in the node embedding space. The radius of the nearest-

neighbors ball is defined using the embedding of the training data (i.e.,

the nodes that are already in the network), so that the prediction ac-

curacy on the training dataset is maximized.

• Linear Model: We consider the link prediction as a classification task,

where the classifier differentiates the node pairs connected by an edge

from the pairs that are not. We first augment the input data by con-

sidering any subset of data from Section 5.2.1, selecting all node pairs

(u, v) where an edge e = (u, v) exists and concatenating their vector

representations into a new vector. Such concatenations are mapped to

the positive class, i.e., y = 1. Then, we randomly sample negative pairs

from each subset, where there are no edges in between, and set their

y = 0. Finally, we train different linear classification methods, such as

LASSO, Ridge, and SVM, on the augmented training set < (u, v), y >

and make inferences on the test set. Note that this approach does not

have newly added node w, so only transductive experiments apply.

• Graph2Gauss: As mentioned in Section 2, the Graph2Gauss [37]

method trains a Gaussian model over the training network and fur-

ther expands it using the newly added nodes so that the dissimilarity

with respect to the Gaussian model is minimized between all connected

nodes.

• DeepWalk: DeepWalk [66] considers short truncated random walks on

the graph as a language corpus and vertices of that graph as vocabulary.

It uses a skip-gram language model.
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• Node2Vec: Similar to DeepWalk, Node2Vec [67] uses a skip-gram

language model over a graph to learn its structure. In Node2Vec, pref-

erences for depth-first or breadth-first sampling can be specified.

• LINE: The LINE embedding method [68] attempts to represent nodes

as low dimensional embeddings that combine first-order (direct con-

nection between nodes with strength weight) and second-order (direct

neighborhood overlap between two nodes) proximity. The algorithm

employs sampling of the second-order relationships to improve effi-

ciency and make learning on datasets with millions of nodes and billions

of edges feasible.

• Graph Convolutional Network: GCNs [63] use a message-passing

algorithm to propagate information between neighboring nodes. They

typically employ multiple graph convolutional layers to learn increas-

ingly complex features. Generally, GCN extends the capabilities of

CNN by incorporating the Laplacian matrix as a first-order approxi-

mation for the propagation between the layers of spectral graph con-

volutions.

• Graph Attention Network: GATs [64] employ an attention mecha-

nism that assigns different importance to neighbor nodes. This allows

the model to aggregate information from different parts of the graph ef-

ficiently. The attention mechanism dynamically adjusts to each node’s

neighborhood, enabling the model to adapt to varying connectivity

patterns and handle irregular structures. Their ability to capture local

and global contextual information makes them particularly well-suited
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to complex graph data tasks.

5.2.3. Parameter Setting

For training our method as well as Graph2Gauss, we augment the training

network into multiple triples (u, v, w), where u and v are connected while

w is a “negative sample” drawn from those nodes that do not connect to

neither u nor v. For validation purposes, we aim to predict whether there is

a connection between each new-old pair of nodes from the test set. Further,

we configure the parameters for the baseline models as follows:

• Radius Neighbours: The radius of the nearest-neighbors ball is 0.74,

which is the optimal value that minimizes the prediction error on the

training set.

• Linear Models: Three linear classification models are implemented,

including LASSO, Ridge, and the linear SVM model. We adopt the

sklearn7 implementation of these three algorithms maintaining the de-

fault parameters. For Ridge and LASSO, we set α = 1. For the SVM

classifier, the regularization parameter is set as C = 1 and the radial

basis function (RBF) as the kernel (see [69]).

• Graph2Gauss: In the Graph2Gauss method, the Gaussian model for

a single node is built based on the node’s embeddings and its k-hop

neighbors. We follow the same parameter setting as in [37] and set the

count of maximum hop k = 2. We implement a two-layer perceptron

to represent each node using the mean and covariant of a Gaussian

7https://scikit-learn.org/stable/index.html
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distribution in L = 64 dimensions. We then train the model for 500

epochs and use the Adam optimizer with a learning rate of 0.01 and

no weight decay.

• DeepWalk: The embeddings are trained over 100 epochs with window

size 10 and K = 3 negative samples. Overall, n = 10 random walks

are simulated with walk lengths of l = 80.

• Node2Vec: We use the skip-gram language model with a window size

of win = 10 and K = 3 negative samples over 100 epochs. n = 10

random walks of length l = 40 with return parameter of p = 1 and

in-out parameter of q = 4 are simulated in order to build the corpora.

• LINE: The LINE model is trained for 50 epochs with a batch size of

1024. The Adam optimizer is used for gradient descent with a learning

rate of 0.001 and no weight decay. The number of negative samples is

set as K = 3, and second-order proximity is used.

• Graph Convolutional Network: We use the authors’ recommended

settings in the GCN model. Specifically, the model is trained for 200

epochs and uses the Adam optimizer with a learning rate of 0.01, two

hidden layers, a dropout being 0.5, and no weight decay. Since the

burglary network is large, we utilized two decomposed layers [70] to

solve memory issues in our GCN experiments.

• Graph Attention Network: The GAT model, featuring eight atten-

tion heads, is trained for 200 epochs. Gradient descent is performed

using the Adam optimizer, with a learning rate of 0.01, two hidden
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Methods Featured Parameters ROC-AUC Average Precision

Conventional methods

Radius Neighbours Maximum radius r = 0.74 - 0.5146

LASSO Regularization parameter α = 1 - 0.5000

Ridge Regularization parameter α = 1 - 0.6114

SVC Regularization parameter C = 1 - 0.6065

Graph2Gauss doutput = 64, dhidden = 64, nhidden layer = 2 0.6711 0.6556

Combination of basic graph
embeddings and case summary text embeddings

Node2vec + SIF Pooling function = avg 0.568 0.5631

DeepWalk + SIF Pooling function = avg 0.5837 0.5833

LINE + SIF Pooling function = avg 0.533 0.5333

GCN + SIF Learning rate = 0.01, dhidden = 64, ndecomposed layers = 2 0.6206 0.6207

GAT + SIF Learning rate = 0.01, dhidden = 64, nheads = 8 0.6128 0.6076

Variants of DEAL framework

DEAL-tr θ = [0.1, 0.85, 0.05], λ = [0.1, 0.85, 0.05] 0.7580 0.7567

(default setting)

(increase θ) θ = [0.2, 1.7, 0.1], λ = [0.1, 0.85, 0.05] 0.7582 0.7569

θ = [0.4, 3.4, 0.2], λ = [0.1, 0.85, 0.05] 0.7583 0.7571

(change λ) θ = [0.1, 0.85, 0.05], λ = [0.2, 1.7, 0.1] 0.7580 0.7567

(change both) θ = λ = [0.05, 0.425, 0.025] 0.7576 0.7561

θ = λ = [0.2, 1.7, 0.1] 0.7582 0.7569

θ = λ = [0.4, 3.4, 0.2] 0.7583 0.7571

DEAL-ind θ = [0.1, 0.85, 0.05], λ = [0.1, 0.85, 0.05] 0.7468 0.7477

(default setting)

(increase θ) θ = [0.2, 1.7, 0.1], λ = [0.1, 0.85, 0.05] 0.7470 0.7479

θ = [0.4, 3.4, 0.2], λ = [0.1, 0.85, 0.05] 0.7470 0.7480

(change λ) θ = [0.1, 0.85, 0.05], λ = [0.2, 1.7, 0.1] 0.7468 0.7477

(change both) θ = λ = [0.05, 0.425, 0.025] 0.7465 0.7473

θ = λ = [0.2, 1.7, 0.1] 0.7470 0.7479

θ = λ = [0.4, 3.4, 0.2] 0.7470 0.7480

θ = λ = [0.8, 6.8, 0.4] 0.7471 0.7480

Table 2: Inductive link prediction results on the crime network. The best results in the

transductive and inductive settings are highlighted separately. Note that the ROC-AUC

is not applicable for Radius Neighbour and linear approaches.

layers, a 0.6 dropout rate, and no weight decay.

5.2.4. Results Discussion

We compare the methods with respect to ROC-AUC and Average Preci-

sion (AP). However, simple baselines such as Radius Neighbours and Linear

Models can only deliver Average Precision. The results of our experiments

are reported in Table 2, while our findings are as follows:

• LASSO and Radius Neighbours achieve the worst results in correctly

predicting links in the crime network. This was expected since both use
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straightforward strategies in comparing node embeddings. However,

more complex regression methods, such as Ridge Regression which gives

more importance to the correlation between variables, notably achieve

better results. Moreover, an SVM classifier with a linear kernel (SVC)

can achieve comparable results to Ridge Regression. Graph2Gauss

reaches the best results among the conventional baselines.

• Low-dimensional node embedding methods, including LINE, Node2Vec,

and DeepWalk, do not show promising results on the crime network.

LINE achieves the worst results among all three tested node embed-

ding methods, unlike the experiments and comparisons in the original

paper [68]. LINE is supposed to be more scalable than DeepWalk.

Still, since it is an adjacency-based node representation, it does not

perform as well as random walk-based embeddings in smaller networks

like criminal analysis networks. Furthermore, since these node embed-

ding methods are unsupervised, a simple SVC or Ridge classifier can

reach comparable results.

• DEAL achieves considerably better results than conventional linear

models and node embedding methods. This indicates that the DEAL

framework effectively combines the structure and attributes of the crime

network and extracts their augmented relations better than the meth-

ods that only use structure or attributes. Therefore, aligning the net-

work topology with the node attributes is an effective strategy.

• Using a transductive validation set marginally improves the DEAL re-

sults. The larger the training set, the greater the performance improve-
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ment.

• Finally, DEAL is not sensitive to its hyperparameters. Changing the

parameters θ and λ does not have a noticeable impact on the perfor-

mance of the DEAL link prediction framework in both its transductive

and inductive tests.

6. Conclusion and Future Outlook

This paper studies the problem of co-offense prediction and crime linkage

using real-life burglary data. We propose two network-based learning frame-

works to automatically predict the links among offenders or crime cases. The

first framework is a simple similarity-based unsupervised approach that does

not require any labeled training instances, as it makes predictions solely based

on the network topology. The second framework, DEAL, is a supervised ap-

proach that aligns the network topology with its node attributes to efficiently

predict links, specifically for unseen newly emerged nodes. Since the unsuper-

vised approach does not require training phases, it is better in scalability and

has less need for memory requirements. However, it only works for transduc-

tive link prediction, which is suitable for predicting upcoming crimes based

on the previous network structure. Alternatively, inductive link prediction is

beneficial for finding connections between a new unknown case and existing

ones. Experimental results indicate that the proposed frameworks are reli-

able and improve state of the art in criminology. However, there are several

enhancements that can be made in the future:

• The proposed frameworks, especially the supervised DEAL framework,

deal with an offline setting. As a future direction, we will adapt the



6 CONCLUSION AND FUTURE OUTLOOK 33

DEAL framework to the online setting, where the model is updated

upon receipt of new instances.

• As mentioned in Section 3, we build on a previous study ([19]) and use

the SIF embeddings for crime reports. However, one could train and

fine-tune more recent embedding methods, like AlephBERT, specifi-

cally on police reports. This experiment will be continued in the future.

• In this paper, we only consider homogeneous graphs where the nodes

are either offenders or crimes. However, the original graph is bipar-

tite, with nodes representing both offenders and crimes. Therefore,

the bipartite graph could be converted into a hypergraph, where the

nodes are offenders, and a hyperedge indicates a crime and connects

it to all associated offenders. In this way, both high-order semantics

and complex relations between nodes can be captured, thus making

transductive link prediction a hyperedge prediction problem. There is

rich literature on heterogeneous graph embedding [71, 72, 73] and even

on bipartite embedding as a special case [74]. Moreover, heterogeneous

multi-level frameworks have recently attempted to learn the importance

of nodes through hyperedge attention mechanisms [75, 76]. An inter-

esting future direction is to extend the DEAL framework for hyperedge

prediction [77] and compare it with heterogeneous graph embedding

methods and the homogeneous version.
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Figure 5: The visualizer user interface and its components. The sidebar enables the user

to load, save and export a network. The main frame illustrates the network and provides

editing and exploring of it.

7. Appendix

7.1. Network Visualization Platform

We developed a public visualization platform with a user interface for link

prediction8 as illustrated in Figure 5. The platform consists of three main

components:

1. The analyzer provides the necessary analysis functionalities for the

requests received from the web interfaces & visualizer. It queries the

corresponding data from the database manager or external graph data,

performs the requested analysis, and returns the analysis results.

8https://anonymous.4open.science/r/criminal-network-visualization-2346
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2. The web interfaces & visualizer, which is a web-based component

mainly for end-users to import, modify, perform analysis, and visually

examine networks. This component receives users’ requests from the

database manager or external graph data and the corresponding anal-

ysis from the analyzer and visualizes the results on web interfaces.

Our platform enables users to export the network into a file or an image

via the sidebar menu options for later use. The output file is a JSON

graph file with the attributes in nodes and links. The network image

can be exported in any of the three SVG, PNG, and JPEG formats.

3. The in-memory database manager is designed to work smoothly and

transparently with other components to load network data. For larger

and more complex graphs, we can migrate to any graph database, such

as JanusGraph or GraphQL, suitable for querying massive graph struc-

tures with only minor changes.

Besides the built-in networks in database manager, our system supports

loading external networks using a standard JSON format. The required

fields of the nodes for the JSON graph file are “id” and “type”, while

the required fields of the links are “source”, “target”, and “type”.

Our platform provides a drop-down menu to configure the parameters for net-

work analysis functionalities such as link prediction9. Our interface contains

different parts:

• The sidebar contains options related to loading, saving, and export-

9Our visualization platform offers other network analysis functionalities, including com-

munity detection and social influence analysis
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ing a network in the “Network” tab, the network analysis tools in the

“Analysis” tab, and general information about nodes and edges in “El-

ement and Network Information”.

• The main frame primarily includes the visualization of the network

itself and the means to edit and explore it. Each node is initially

displayed in the network interface with a label attached to it. If the

underlying dataset contains a label or name field, the content of that

field is used. Otherwise, it uses the “id” field. The appearance of

nodes is determined by their type property: different types of nodes

are visualized using different shapes and colors. Expandable nodes are

marked with a green plus sign on top of itself. A node is expandable

if it has outgoing edges to nodes not yet displayed by the visualizer.

If there is a probability or weight property attached to an edge, the

thickness of an edge illustrates the value of that property. Nodes can

be moved around by clicking and dragging them to the desired posi-

tion. It is also possible to drag the whole window. Furthermore, nodes

and edges can be clicked, which changes their visual appearance and

allows further interaction with the selected element(s). Clicking nodes

also highlights neighboring nodes and outgoing edges. If the network

contains edge probabilities, a probability threshold slider is presented

below the network visualization and can be used to hide edges below a

certain threshold. Moreover, the controls at the bottom left allow hid-

ing and highlighting node and edge types and selecting the variables to

be displayed above the nodes in the visualization. Element types are

defined in the dataset with the “type” field. All node properties in the
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dataset can be displayed as labels using the three boxes.

• The Editing buttons, including adding, deleting, and editing a sin-

gle element (node or edge) or merging two or more elements of the

same type, permanently alter the network and are meant for upgrading

the original network. However, the Exploring buttons, which expand

nodes or exclude elements, only affect the current visualization and not

the original loaded network.

• We also provide the option of loading the original network beside the

main modified network via the OPEN ORIGINAL NETWORK but-

ton, which splits the screen into two. This means that all changes done

to the network in the main windows are not adopted in the original net-

work. The original network can be dragged around, and nodes can be

repositioned, but no other changes can be made to this network. The

“CLOSE ORIGINAL NETWORK” button closes the original network

view and brings the modified network back to full size.

Besides this network analysis platform, we are developing a powerful

crime investigation tool as part of the ROXANNE EU project10 called Au-

tocrime. The Autocrime platform is not limited to the network analysis

functionalities and includes a set of tools for researchers and law enforce-

ment agencies to process intercepted conversations in ongoing investigations.

It expects audio files and creates a JSON file which is then fed to the net-

work analysis technologies. Figure 6 shows a snapshot of Autocrime running

transductive link prediction on the same nodes as in Figure 4.

10https://www.roxanne-euproject.org/
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(a)

(b)

Figure 6: (a) Visualization of a subnetwork of offender network in the Autocrime platform,

(b) Transductive link prediction results on OID#179 and OID#220. The predicted links

are shown in yellow arrows.


