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Abstract. Entity matching, also known as user identity linkage,
is a critical task in data integration. While established techniques
primarily focus on large-scale networks, there are several applica-
tions where small networks pose challenges due to limited training
data and sparsity. This study addresses entity matching in the field
of criminology, where small networks are common and the num-
ber of known matching nodes is restricted. To support this research,
we exploit a multimodal dataset, collected as part of a security-
related project, consisting of an intercepted telephone calls network
(i.e., ROXSD data) and a network of social forum interactions (i.e.,
ROXHOOD data) collected in a simulated environment, although
following real investigation scenario. To improve accuracy and ef-
ficiency, we propose a novel approach for entity matching across
these two small networks using node attributes. Existing techniques
often merely focus on topology consistency between two networks
and overlook valuable information, such as network node attributes,
making them vulnerable to structural changes. Inspired by the re-
markable success of deep learning, we present UGC-DeepLink, an
end-to-end semi-supervised learning framework that leverages user-
generated content. UGC-DeepLink encodes network nodes into vec-
tor representations, capturing both local and global network struc-
tures to align anchor nodes using deep neural networks. A dual learn-
ing paradigm and the policy gradient method transfer knowledge and
update the linkage. Additionally, node attributes, such as call con-
tents and forum exchanged texts, enhance the ranking of matching
nodes. Experimental results on ROXSD and ROXHOOD demon-
strate that UGC-DeepLink surpasses baselines and state-of-the-art
methods in terms of identity-match ranking. The code and dataset
are available at https://github.com/erichoang/UGC-DeepLink.

1 Introduction

Capturing the dynamics of criminal groups is crucial for generat-
ing actionable insights in intelligence monitoring. However, despite
its theoretical and practical significance, there is a notable research
gap in addressing this problem. This gap is particularly evident when
dealing with data originating from multiple sources, where leverag-
ing such data can yield augmented information. These diverse data
sources encompass a wealth of contextual information, including
voice, text, and images, as well as valuable network-related (i.e.,
traffic) data. By representing the dynamics of criminal interactions

as graphs, we can identify cross-platform account matching to ana-
lyze the networks. This essential step, known as user identity linkage,
aims to enhance identity verification and privacy protection. How-
ever, conducting research in the field of criminology poses challenges
due to the high security and privacy concerns associated with crimi-
nal data. As a result, there is a scarcity of publicly available data for
the criminology research community. To address this limitation, this
work is built on a multimodal dataset specifically designed to facili-
tate research and exploration in the realm of criminal networks1. This
dataset comprises two interconnected networks: an intercepted tele-
phone calls network (ROXSD) and a network of social forum interac-
tions (ROXHOOD), both collected in a simulated environment while
following real scenarios of criminal activities [19]. ROXSD provides
insights into communication patterns and relationships among indi-
viduals involved in criminal activities through intercepted telephone
calls, whereas ROXHOOD captures users’ interactions within social
forums, allowing for the analysis of online discussions and connec-
tions within criminal groups. The dataset includes some overlaps in
both target and non-target individuals, enhancing its applicability and
realism. Together, both datasets offer a valuable resource for future
studies in the field of criminology, enabling researchers to investi-
gate and analyze criminal networks within a controlled yet realistic
environment.

Existing approaches to address the problem of user identity link-
age primarily fall into two main categories: feature-based approaches
that involve manual feature engineering based on domain knowl-
edge and have a more historical nature [37] and network embed-
ding techniques that leverage recent advancements in graph neural
networks to preserve the proximity of users with similar relation-
ships [41, 12]. However, these methods have certain limitations when
applied to intelligent criminal monitoring. They either rely heavily on
high-quality user-generated content, including user profiles, or face
challenges related to insufficient training data when focusing solely
on network topology. Moreover, these methods predominantly fo-
cus on large-scale online social networks like Facebook, Twitter, and
LinkedIn. However, in the context of intelligent criminal monitor-
ing, the target groups often represent a minority, and data collection
needs to be limited to ensure that privacy concerns are respected.
Our initial study related to ROXANNE project was done through
applying speaker identification step while leveraging the frequency

1 https://www.roxanne-euproject.org/data
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of previous interactions extracted from a graph [8]. To address the
existing issues, this paper introduces a comprehensive framework,
UGC-DeepLink, which takes into account the heterogeneity of users’
activities and behaviors across different sources. It aims to capture
latent semantic relationships among users based on network struc-
tures and leverages user-generated content to enhance the ranking
of matching nodes. The framework consists of three main compo-
nents: (1) a network sampling component that generates training se-
quences while preserving the maximum network structure and cre-
ates a node embedding, representing each node in the network as
a low-dimensional vector, (2) a deep neural network that learns a
non-linear transformation for aligning users across networks using
anchor nodes, with a dual-learning process that improves the perfor-
mance of user identity linkage and enhances supervised training, and
(3) a re-ranking strategy based on user-generated content to stabi-
lize the outcomes, particularly when labeled samples are limited. The
proposed UGC-DeepLink framework builds upon the earlier method
called DeepLink [44]. While DeepLink enhances node-matching re-
sults by including mapping functions and receiving anchor nodes,
it alone does not yield stable results in small networks with limited
training pairs. In real-world criminal investigation scenarios, investi-
gators often possess knowledge of only a limited number of matched
nodes and require stable results from the machine learning method on
the remaining target nodes. Our experimental analysis demonstrates
that the UGC-DeepLink framework successfully meets this goal.

2 Multi-Modal Data Collection

Our dataset comprises two parts that we explain in the following:

Intercepted Calls Network (ROXSD): The ROXSD story is built
on a drug dealing case in which a group of criminals communicates
with each other over the telephone [22]. Their calls are intercepted
(wire-tapped) by several (fictional) police organizations. The wire-
tapped data also includes a number of “innocent” people communi-
cating with the criminals and with each other in several languages.
For instance, some offenders speak Czech internally while planning
local criminal activities but use (possibly heavily accented) English
when planning transnational activities with others. The topic of each
call was manually scripted, and the characters were role-played by
voice actors. The scenario consists of some fictional interconnected
cases:

• Case 1. Two university students (C01_M, G01_M) in Prague are
suspected of selling drugs. G01_M speaks both German and En-
glish in his calls. The police wire-tap two of C01_M’s mobile tele-
phones and find out that he is in contact with other individuals who
are either users or distributors of drugs, and the communication is
mainly in Czech or Slovak. He also communicates in English with
one of the main dealers, R01_M. Most of the communication oc-
curs at the point where the drugs change hands.

• Case 2. The police suspect two Vietnamese guys, V01_M and
V02_M, dealing in large quantities of drugs, and V02_Mmay have
a production site. They mostly speak Vietnamese and frequently
call each other. They are also often in touch with two other Viet-
namese contacts. V01_M starts communicating with an unknown
person in English, planning a large delivery of drugs.

• Case 3. The links between cases 1 and 2 are uncovered during
the individual investigations. Then, the police realized that the
criminal activities spread across borders to Austria and Germany.
C07_F replaces C01_M and starts close interaction with C06_M,

Figure 1: Histogram of recording durations.

Figure 2: Speech activity per language.

who often travels in Czechia and abroad. The two extend their ac-
tivities in Germany and connect with G01_M and with G03_M,
respectively. C06_M has multiple intercepted calls with G03_M.
The police decide to intercept the phone number of the hotel where
they are staying and the phone number of a bar where they are
attending, even though most of the calls from and to these num-
bers are non-target communication. C06_M transfers further drugs
from the Vietnamese lab to Germany for G03_M. Later, the deal-
ers register themselves in the darknet “drug” forum called “ROX-
HOOD” and start messaging other people. For example, they share
information about a party in a bar in Munich where potential drug
users and distributors meet. As an outcome, the narcotics business
unfolds to other countries such as France and Greece.

The complete scenario of the ROXSD calls contains 432 inter-
cepted telephone conversations of over 18 hours of speech, saved
in 8kHz, 16-bit, stereo wave files. Figure 1 shows the histogram of
recordings with respect to their durations.

ROXSD is multilingual not only on the call level but also within
the calls. A conversation may start in one language and continue in
a different language. Moreover, the language of conversation may
change when the phone is handed over to another person. There
are also cases where the speakers switch the language precipitously
briefly and then switch back. A total of 15 languages are spoken in
the calls. Thirteen of them are real conversations, whereas two are
only single phrases or brief sentences. Figure 2 shows the distribu-
tion of speech activity across languages in the dataset.

The ROXSD calls are also complemented with a set of ground
truth information, which we call the “metadata”. The metadata set
consists of several categories such as speaker data, call data, call
transcripts, NLP annotations, and other information. The informa-
tion in the metadata set is anonymized/pseudonymized wherever pos-
sible.

The ROXSD network, as illustrated in Figure 3 (a), has been con-
structed using phone call records. The network primarily consists
of two types of nodes representing target and non-target speakers.
Furthermore, certain speakers with undefined behaviors or relation-
ships in the network, which are common during investigations, are
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Figure 3: (a) The ROXSD network structure. The thickness of the
edges indicates the frequency of calls between speakers. (b) The
ROXHOOD network structure.

marked as unspecified nodes. After data cleaning and preprocessing,
the ROXSD network comprises a total of 104 nodes and 208 edges.
Twenty-five of these nodes are target persons, 60 are non-target per-
sons, and 19 are unspecified characters. Note that the speakers are
not necessarily the owners of the respective telephone numbers. The
weight of an edge between two speakers increases with the frequency
of their calls. We use node2vec for the node embedding based on the
topological structure and the word-based embedding without fixing
out-of-vocabulary (OOV) terms.

Drug Forum Network (ROXHOOD): ROXHOOD is an exten-
sion of ROXSD that mimics social media communications. It was
designed as a forum website where the users exchange messages
about several topics with each other and in which legal and illegal
content coexist. In order to avoid any legal and ethical issues aris-
ing from accessing and working on publicly available social media
platforms, ROXHOOD was specifically built as a simulation envi-
ronment for data collection over a fully featured mock-up website
developed in Misago2. It was accompanied by Rocraw, a tool to col-
lect the available data from the ROXHOOD threads and to store them
in an Elasticsearch instance.

Participants could create an account with a username, password,
and a fake email account. Registered users were allowed to start a
new thread, comment, or search and also to set up a private thread
with their invitees. They could write messages in text format, upload
files of various formats (e.g., docx, jpeg, mpeg), share links, com-
ment on threads below the initial post, and mention each other (via
@usernameX). Moderators could also create categories together with
an unlimited number and depth of subcategories.

Data could be downloaded directly in a text file, including meta-
data information such as thread url, thread title, number of posts
(per thread), posts, thread creator, mentions-replies for each post,
message, user, date, url, has image (true/false), has attachment
(true/false), contains url (true/false), image urls, attach urls, and
message urls. In the ROXHOOD set, there are 32 public threads and
333 public posts from 48 registered users. The content was analyzed
by named entity recognition, and 110 entities were extracted. The en-
tities were about persons (21), locations (49), and time (40). In addi-
tion to the text messages, ROXHOOD also contains video messages
with spoken content in English. Across the 23 videos, 107 utterances
and 91 entities were identified. Here, the number of persons, loca-
tions, and time entities are 44, 26, and 21, respectively.

The ROXHOOD network is constructed based on the intercom-
munication patterns amongst users on the drug forum. Connections
are established when a user replies to, quotes, or mentions another

2 https://misago-project.org/

user or a specific location within a thread, post, or comment. Ad-
ditionally, users are considered connected to thread creators when
they start following a thread on the forum. The resulting ROXHOOD
network from crawled data consists of 40 nodes and 121 edges, as
depicted in Figure 3 (b). It is worth noting that 16 users within the
ROXHOOD network have also been identified as speakers in the
ROXSD network. These overlapping nodes serve as ground-truth
data for training and evaluation in our experiments. Similar embed-
ding algorithms, as employed in the ROXSD network, are used in
this context as well.

3 Entity Matching Framework

In this paper, we focus on the problem of entity matching be-
tween ROXSD and ROXHOOD. Formally speaking, we consider two
graphs, each of them represented byG = (V ;E), where V is the set
of vertices representing a user, and E is the set of edges connecting
users. Each network is represented with a unique latent user space
according to the probabilistic distributions of its nodes, and our goal
is to link and match entities based on that:

Entity Matching Definition: Given any two networksGs andGt,
the goal is to predict all the pairs of entities us and ut, chosen from
Us and Ut respectively, belong to the same person (i.e., us = ut).
That is, learning a binary function ΦU : Us ×Ut → {0; 1} such that

ΦU (Us,Ut) =

{
1 us = ut

0 otherwise,
(1)

where ΦU (Us,Ut) = 1 means a correct linkage. However, in prac-
tice, finding a perfect ΦU function is difficult to obtain. Hence, we
try to find an approximate graph mapping function. Generally, the
mapping function Φ is unknown for a given G, and our objective is
to learn a bilateral mapping (Φ and Φ−1) such that the two networks
are aligned by maximizing the similarity of all aligned pairs.

We first extract samples from a network, then embed nodes into la-
tent space, and finally learn entity linkage via supervised dual learn-
ing. Although this general approach could achieve good results in
large networks, the model’s performance is not always stable in small
networks with a limited number of training samples due to the ran-
dom nature of the method and specific graph structures. Therefore,
we propose a modified solution, UGC-DeepLink, for small multi-
modal networks (Figure 4). The detailed description of each step is
as follows:

3.1 Node Embedding

Nodes are embedded into a latent space by generating multiple se-
quences using several rounds of random walks for each node, ui ∈
V . Random walks can implicitly capture and encode the hidden ba-
sic structural network information and relationships among the nodes
and reduce the sensitivity of calculations to slight changes in a graph.
At each step, a node ui is selected, and we proceed along a randomly
selected edge until length L is reached. Generally, this step could be
time-consuming, especially in biased random walks like LINE [34]
and node2vec [9]. However, criminal networks are relatively small,
and using traditional random walks and the sampling step do not add
a significant burden.

Once node sequences are sampled for node ui in iteration r, we
use the Skip-gram model [16] to update its representation and predict
the context of a node. In graph representation, the skip-gram model
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Figure 4: UGC-DeepLink Architecture: it learns a dual-mapping deep neural network on the node embedding of a training sequence and returns
the final entity matching ranking while considering the user-generated content embeddings.

maximizes the average log probability in a given sequence of node
u1, u2, ..., um ∈ G:

1

m

m∑
t=1

w∑
j=−w

log p(ut+j |ut), j �= 0, (2)

where w is the sliding window size, longer windows on training
nodes achieve higher accuracy at the cost of longer training time.
The conditional probability is defined as the occurrence of the j-hop
neighbor, ut+j , given node ut:

p(ut+j |ut) =
exp (vT

ut+j
v′ut

)∑m
i=1 exp (v

T
ui
v′ut

)
. (3)

vui and v′ui
are the input and output vector representations of node

ui, and m is the network’s node size. In order to improve training
efficiency, a negative sampling strategy (as proposed in [17]) is em-
ployed. Each node is sampled with probability pn(u) d

3/4
ui , where

dui is the degree of node ui and a stochastic gradient descent algo-
rithm is used to solve Equation 2.

3.2 Learning Mapping Function

Once node embeddings are calculated for each network, the mapping
functions between two networks should be learned usingMulti-Layer
Perceptron (MLP) and based on the labeled anchor nodes. The map-
ping function Φ(v(ui)) is learned by minimizing the loss function
that is based on the cosine similarity of the mapped vector and the
embedding representation (v(uj)):

l(v(ui),v(uj)) = min(1− cos(Φ(v(ui)),v(uj))). (4)

The loss ranges from zero, meaning exactly the same, to two, mean-
ing exactly opposite. In practice, a batch size of h(h << n) vectors
is fed to MLP at each step until the n anchor nodes are visited.

The MLP-based anchor mapping is a one-way process since a re-
verse mapping, Φ−1, does not take into account the training anchor
nodes. Therefore, we use dual learning to exploit these anchor nodes
fully and improve two mapping functions by leveraging the duality
of Φ and Φ−1. Hence, we use two steps:

1. Unsupervised Pretraining: For each anchor node ub (labeled and
unlabeled), we first obtain v′(ub) via the mapping, v′(ub) =
Φ(v(ub)), and then map back via Φ−1(v′(ub)) to get a vector
v′′(ub). Similar to autoencoders, the loss of this auto-mapping
is calculated based on the difference between v(ub) and v′′(ub).
Moreover, the anchor nodes in one network are blinded with re-
spect to the other.

2. Supervised Learning: The labeled anchor nodes are used to im-
prove the mapping function Φ and Φ−1 by playing a dual learn-
ing game. It starts from ua of the source network. We use Φ to
map its vector on the target space and search its k-nearest vectors
S(v′(ua)) = Top(Φ(v(ua))), indicating the most similar k em-
bedding vectors of the target anchor nodes. The target agent then
computes a reward ras,t =

1
k

∑k
i=1 log(cos(v(ui),v

′(ua)) + 1)
based on the similarity of two vectors, which ranges between zero
to two. Mapping the exact identity of ua is difficult; therefore, we
search and average over top-k vectors.
Intuitively, the reward function of the dual mapping is calculated
by:

rat,s =
1

k

k∑
i=1

log(cos(Φ−1v′(ui),v(ua)) + 1), (5)

where it measures the average similarity between Φ−1v′(ui) and
v(ua). Thus, the action value of selecting user (state) ua is a lin-
ear combination of ras,t and rat,s, which indicates the estimated
probability of correct real identity linkage by the mapping func-
tions. The expected reward for the hth batch is calculated as:

E[rh] =

[n/h]∑
a=1

(αras,t + (1− α)rat,s), (6)

where α is learned and tuned in the training.

3.3 Re-rank Matched Nodes Using Node Attributes

Leveraging features of the structure-based user identity linkage ap-
proach can improve the linkage efficiency. In the existing network
structure embedding, some embedding vectors for neighboring nodes
may be too close to distinguish from one another. Accordingly, con-
sidering node attributes, such as usernames, and embedding the fea-
tures irrelevant to network structures into the network embedding
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vector obtained from Equation 2 may be useful for discriminating
among the top-k candidates.

In our proposed methodology, we leverage vectorized individual
user-generated content (UGC) as their node attributes. We employ
four distinct methods for generating these attributes:

• sparse-word: We compile a single document for each user by
concatenating all of their generated content. Subsequently, we nor-
malize the text by removing Unicode accents and vectorizing it
into a word-level sparse vector. Each position in the vector corre-
sponds to a word, with its value representing the tf-idf value [28]3.

• sparse-char: Similar to the previous method, we create a single
document for each user, but instead of a word-level vector, we
generate a char-level tf-idf sparse vector. Each position in the vec-
tor corresponds to char 4-grams and 5-grams found in the user
content, weighted by tf-idf. Our experimental results indicate that
these two configurations yielded the best performance.

• dense-avg: We convert the individual content of each user into a
dense vector using a multilingual BERT model [6]. Specifically,
we employ the paraphrase-multilingual-mpnet-base-v2 model
from Sentence-BERT [26] to obtain a sentence embedding for
each user-generated content. The user’s overall dense vector is
then obtained by averaging all content embeddings, effectively
representing the centroid of the user’s content embeddings.

• dense-weighted: Similar to the previous method, we use a
weighted average to obtain the final user-level embedding. The
weight assigned to each document is inversely proportional to its
cosine similarity to all other users’ content embeddings. In other
words, content embeddings that are more unique or distant from
other users’ content carry more weight on average, exerting a
greater influence on the final vector.

Algorithm 1 presents the pseudo-code of UGC-DeepLink.
(G1(V1, E1), G2(V2, E2)) represent the pair of graphs, C1 and C2

indicate the user-generated content of the nodes in V1 and V2 respec-
tively, and Ltrain = {0, 1}|V1||V2| denotes the training data for the
known node linkages. We calculate the prior similarities, denoted as
Sprior, between every pair of nodes by computing the pairwise co-
sine similarity of their node attributes (line 3). For a given node ui

that should be matched, we initially predict all its potential candi-
date matches using the MLP model (lines 7-10). Subsequently, we
re-rank its top-k candidates based on their prior similarities (lines
11-13). The algorithm returns the affinities between the two graph
nodes. Our approach is based on the assumption that both the local
topology of the networks and the behavioral patterns of real individ-
uals contribute to the identification of their connections.

4 Experiments

We conducted a comparative analysis of our approach against four
other comparison methods: TF-IDF, IsoRank, NetAlign, and vanilla
DeepLink. Below is a brief description of these methods:

TF-IDF: This baseline relies only on the vectorized UGC node
attribute, here, the content of calls or forum texts. Initially, a linear
model is trained on the training set to establish a transformation be-
tween the node embeddings from two graphs. This is done under
the assumption that the UGC vector space exhibits linear correlation.
During the inference, the source node’s embedding is transformed

3 Implementation is carried out using the TfidfVectorizer class from Scikit-
learn [24].

Algorithm 1 UGC-DeepLink Algorithm
1: Input: G1(V1, E1), G2(V2, E2), C1, C2, Ltrain

2: Eprior
1 , Eprior

2 = vectorize(C1), vectorize(C1)
3: Sprior = pairwise_cos_similarity(Eprior

1 , E prior
2 )

4: Φ = argminΦ E(ui,uj)∈Ltrain l(Φ(v(ui)),v(uj))
5: affs := []
6: for ui ∈ V1 do

7: Sdl := []
8: for uj ∈ V2 do

9: Sdl.push(cos(Φ(v(ui)),v(uj)))
10: end for

11: for uj ∈ arg sortdesc(S
dl)[1 : k] do

12: Sdl[uj ] = S prior[uj ] + 1
13: end for

14: affs.push(Sdl)
15: end for

16: Return affs

to the target node’s embedding space, and potential candidates are
ranked using cosine similarity.

IsoRank [31]: This algorithm approximates the objective of the
network alignment problem by formulating it as an integer quadratic
program without direct consideration for the matching constraints. It
aims to find a matrix Z that satisfies the following equation:

γATDAZDBB + (1− γ)W = Z,

where A and B represent the adjacency matrices of the two graphs,
andDA andDB are diagonal matrices of their degrees. Here,Wi,j =
wi,j is binary, taking the value one if there is a linkage between ui

from the first graph and uj from the second graph. The resulting
values,Zi,j , provide a heuristic likelihood of node matching between
ui and uj .

NetAlign [17, 2]: This approach employs a message-passing algo-
rithm based on the influence of a node’s closest neighbors rather than
distant ones. It predicts an affinity matrix for nodes in both graphs,
allowing for ranking based on the affinity scores.

Vanilla DeepLink [44] uses an MLP to generate a predicted vec-
tor for each node in the source graph only based on network structure.
Candidates are ranked based on cosine similarity.

4.1 Experimental Setting and Results

We fixed the parameters of each method as follows: In the UGC-
DeepLink framework, the node2vec embedding dimension, the MLP
hidden dimension, and the initial learning rate are set to 500, 800, and
0.05, respectively. The number of walks, walk length, and total train-
ing steps in node2vec are 80, 20, and 1000, respectively. The value
of k in the top-k re-ranking step is set to 10. The vanilla Deeplink
uses the same parameters as UGC-DeepLink. We used the best pa-
rameters of IsoRank and NetAlign, as reported in their papers, and
scikit-learn to train a linear regression model in the TF-IDF baseline.
We used 80% of the 16 pairs of matching nodes for training and 20%
for testing.

When evaluating entity matching methods, various prediction and
ranking metrics are commonly used. Ranking metrics are suitable
for assessing approaches that provide a top-k ranking list of potential
matching user identities, as opposed to selecting only one candidate.
In our experiments, we evaluate methods based on some commonly
used ranking metrics such as AUC, Mean Reciprocal Rank (MRR),
and Success@k and report the results in Table 1. We should note that

Z. Ahmadi et al. / Entity Matching Across Small Networks Using Node Attributes4606



Method AUC Mean Reciprocal Rank (MRR) Success@k (k=2)
TF-IDF 0.42 0.40 0.50
IsoRank 0.54 0.50 0.50
NetAlign 0.50 0.52 0.50
Vanilla DeepLink 0.75 0.56 0.75

UGC-DeepLink (sparse-word) N.A. 0.69 0.75

UGC-DeepLink (sparse-char) N.A. 0.65 0.50
UGC-DeepLink (dense-avg) N.A. 0.52 0.50
UGC-DeepLink (dense-weighted) N.A. 0.81 0.75

Table 1: Performance comparison of node matching methods on
ROXSD and ROXHOOD.

Method train% MRR Success@k (k=2)

UGC-DeepLink (sparse-word)

4/12 0.50 0.50
5/12 0.69 0.75

6/12 0.69 0.75

7/12 0.65 0.50
8/12 0.52 0.50
9/12 0.69 0.75

UGC-DeepLink (sparse-char)

4/12 0.52 0.50
5/12 0.48 0.25
6/12 0.69 0.75

7/12 0.52 0.50
8/12 0.52 0.50
9/12 0.65 0.50

UGC-DeepLink (dense-avg)

4/12 0.50 0.50
5/12 0.83 0.75

6/12 0.69 0.75

7/12 0.56 0.75

8/12 0.52 0.50
9/12 0.52 0.50

UGC-DeepLink (dense-weighted)

4/12 0.50 0.50
5/12 0.69 0.75

6/12 0.69 0.75

7/12 0.58 0.75

8/12 0.65 0.50
9/12 0.81 0.75

Table 2: Impact of the number of train/val pairs on the performance
of different versions of UGC-DeepLink. The best results for each
method are in bold.

AUC is not applicable for UGC-DeepLink since the top-k results of
the Vanilla Deeplink are re-ranked by their UGC embeddings. There-
fore, there are no homogenous classification probabilities to calculate
the AUC.

We observe that the UGC-DeepLink framework performs best
compared to all the baselines and state-of-the-art methods. This is
expected since it is the only approach that considers both the network
structure and the shared text contents as node attributes. As expected,
TF-IDF performs worst since it uses a simple linear regression and
only considers the UGC content. Vanilla DeepLink performs better
than IsoRank and NetAlign, indicating the rich capacity of deep neu-
ral networks in learning the matching network structure. Among the
four types of user-generated content vectors, dense-weighted em-
beddings demonstrate a notable enhancement in terms of recipro-
cal ranks (MRR). We further extended our experiments to evaluate
how the number of training samples impacts the performance of the
UGC-DeepLink framework. As shown in Table 2, BERT-based em-
beddings (dense-avg and dense-weighted) consistently achieve recip-
rocal ranks exceeding 0.8, underscoring their effectiveness and supe-
rior performance in retrieving the correct match as the first item (on
average) compared to tf-idf-based vectors. However, across all vari-
ations, the ability to retrieve the correct match within the top two
items of all queries reaches up to 0.75. Moreover, apart from dense-
weighted user-generated content vectors, the other embeddings do
not necessarily require a larger set of training data to perform opti-
mally.

Table 3 presents the results of the UCG-DeepLink for a sample

Split roxsd-node roxhood-node

Train

de03M_T Horus
cs06M_T Okram
cs07F_T Kiki
fa03F_NT jasmine
el10F_T apo
de01M_T Elysium
de02F_T Prinzessin
cs17M_T Rumreich
cs05M_NT Pablo

Val
en05M_NT Square
el01M_NT beavis
pl01M_NT Driver

Test

ro05M Tiby

el11M Makis

en07M_NT Makis, Tiby, Sheldon, scooby (fail)
ro03M Sheldon

Table 3: A sample case study: The full train/val/test data for the
ROXSD-ROXHOOD matching is shown.

case study involving the matching of ROXSD and ROXHOOD users.
The train and validation splits are provided as-is, while the Test rows
display the prediction output of the UGC-DeepLink. Rows such as
ro05M - Tiby indicate that for the input ro05M, the UGC-DeepLink
correctly predicts its matching node (Tiby) in the first position. Con-
versely, the row en07M_NT – Makis, Tiby, Sheldon, scooby (fail)
signifies that for the input en06M_NT, the prediction fails because
the ground-truth matching (scooby) is ranked at position 4, which
exceeds k = 2.

4.2 A Note on Ethical Concerns

UGC-DeepLink offers improved privacy protection compared to al-
ternative classical methods in criminology by reducing reliance on
sensitive personal data for identity verification. It avoids using sen-
sitive data during model training and focuses on node attributes like
call contents and forum exchanges, represented as embedded vec-
tors rather than detailed content. This approach strikes a balance be-
tween effective identity matching and privacy preservation. However,
there is an inherent trade-off between matching accuracy and privacy
protection - more accurate matching typically requires more detailed
personal data analysis. While UGC-DeepLink minimizes sensitive
data use by primarily leveraging network connections, this may re-
sult in some compromise in matching accuracy. However, our exper-
iments show promising results in this regard. The exact extent of this
trade-off and how it compares to other methods would require further
analysis and could be the subject of another study.

5 Related Work

Most existing solutions to the user identity linkage problem are typi-
cally divided into three main categories:

1. Attribute-based approaches: These approaches calculate dis-
tances among attributes (e.g., usernames, locations, avatars) to
infer latent anchor links between user accounts [37, 11]. Simi-
larity measures like Jaro-Winker distance, Jaccard similarity, or
Levenshtein distance [30] are used for text-based data, and mean
square error, peak signal-to-noise ratio, and Levenshtein distance
[14] for graphical data. On the other hand, frequency-based meth-
ods leverage statistical patterns to compare distances like the bag-
of-words or TF-IDF [41] models. Some methods employ unsu-
pervised approaches to determine username similarity [11], while
others use supervised approaches to learn behavioral patterns in
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username selection [37]. However, relying solely on usernames
for user linkage may lack sufficient precision, and methods like
Mu et al.’s [20] delve into the latent user space based on user
attributes to determine the intrinsic structure of users. Adequate
precision typically demands complete user attribute information.
Matrix factorization-based methods and algorithms like IsoRank
[31] and NetAlign [1] have also been used but may encounter
challenges with sparse and large-scale networks.

2. User Generated Content (UGC) based approaches: These ap-
proaches extract user-generated content such as interests, writ-
ing style [13],and temporal/spatial trajectories [27, 29] to cap-
ture user identity characteristics. Writing style-based approaches
work well for text-dominated social networks, while other meth-
ods extract core interests through temporal topic extraction [23] or
unique activity patterns from location data [27]. However, these
frameworks may not be suitable for linking users across different
types of social networks.

3. Network-based approaches: These methods leverage network
connectivity and topology using network representation learn-
ing techniques to calculate similarities between nodes and their
features [41, 12, 44]. They analyze either the global network
structure or focus on local interaction features between users
and their neighbors. Network-feature-based user identity distance
can be modeled using neighborhood-based models [41, 42] or
embedding-based models [12, 44, 38]. Neighborhood-based mod-
els explicitly represent graphs using shared identified friends [45],
in/out neighbors and in/out-degree [21], while embedding-based
techniques learn latent representations of networks [34, 15, 43].
Due to the success of network representation learning in many ap-
plications, several recent studies have used them to extract latent
network features. Network alignment algorithms can be catego-
rized into pairwise network alignment [39, 10, 44, 25], collective
network alignment [5, 7], high-order network alignment [18, 32],
and hierarchical network alignment [40], depending on the align-
ment scenario and objectives.

In recent years, embedding-based approaches have gained popularity
for learning network structures and latent properties as feature vec-
tors, providing more effective cross-network entity matching than
traditional feature engineering. These approaches offer advantages
such as requiring minimal or no supervision and reducing the need
for expensive and time-consuming feature engineering that relies on
domain expertise. They can be categorized into proximity-based and
feature-based methods. Proximity-based approaches extract similar-
ity among individuals within networks and identify similar individu-
als across networks using first-order [15] and second-order proximity
[12]. Feature-based approaches combine social networks as hyper-
graphs and rank objects based on their likelihood of corresponding
to objects in another network [33, 4]. These methods are effective
when input networks have rich attributes. Further related topics to
cross-network entity matching include knowledge graph alignment
[46, 35] that aligns entities across different knowledge graphs and
cross-layer dependency inference that infers the node dependencies
in the multi-layered networks [3, 36].

6 Conclusion

This paper introduces a comprehensive multimodal dataset consist-
ing of an intercepted telephone calls network (ROXSD) and a net-
work of social forum interactions (ROXHOOD) in a simulated envi-
ronment to enhance research in the field of criminology. We then pro-

pose UGC-DeepLink, a new framework designed for entity match-
ing in small networks. By incorporating node attributes and deep
learning techniques, UGC-DeepLink achieves accurate node match-
ing in small criminal networks. Our experimental results on ROXSD
and ROXHOOD demonstrate the effectiveness and stability of UGC-
DeepLink in identity-match ranking, even with limited training data
in the context of intelligent criminal monitoring. Future work in this
area could explore the integration of additional data sources, other
forms of embeddings, and the development of more sophisticated
deep learning models to improve accuracy and scalability further.
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