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Abstract—Node embedding has recently shown state-of-the-
art performance in various network analysis tasks. However,
most of the existing node embedding methods do not consider
the uncertainty of the input data, which is often the case in
practice. This work offers an empirical evaluation of the typical
node embedding methods when applied on uncertain networks.
Precisely, we examine the performance of embedding vectors
obtained by these methods in a set of downstream tasks. To
this end, we employ a wide range of uncertain networks and
traditional prepossessing techniques for dealing with uncertainty.
Our findings suggest that the existing node embedding methods
perform practically well on networks with uncertainty once the
network data is appropriately prepossessed.

Index Terms—Node embedding, uncertain networks, network
analysis

I. INTRODUCTION

A. Motivation

The node embedding approach has shown outperforming
performance in various network analysis applications [3].
However, most of the existing methods do not consider the
uncertainty in the input data, which is often included through
the imperfection of data collection and analyzing techniques.
Therefore, the performance of existing node embedding meth-
ods on uncertain graphs has not been evaluated comprehen-
sively and remains an open question.

B. Research Objective

In this work, we would like to address this question by ex-
amining the effectiveness of typical node embedding methods
for uncertain networks by evaluating the learned embedding
vectors’ performance in a set of downstream tasks. We study
the most typical type of uncertain networks in which the links
are probabilistically observed. Precisely, there is a probability
associated with each link to indicate the likelihood that the
link is observed in real data.

II. RELATED WORK

In this section, we briefly review the previous works that
are closely related to ours. These works can be grouped into
node embedding methods, uncertain network analysis, and
data investigation.

A. Node Embedding

There has been an increasing number of embedding methods
proposed for unsupervised learning for graphs in recent years.
DeepWalk [22] and node2vec [7] are two of the most popular
approaches based on random walk. These methods consider

a graph as a document and employ truncated random walks
on the graphs as sentences in the document, inspired by Skip-
Gram model [19]. Fundamentally, node2vec is an extension
of DeepWalk, with a flexible biased random walk procedure
depended on second-order random walks.

LINE [23] and SDNE [24] approach graph embedding in
different ways, although these methods use the given graph
directly as its context graph. Unlike DeepWalk and node2vec,
they focus on embedding vectors of closer nodes having either
connection between them or sharing the same 1-hop neigh-
borhood, and then concatenating the two generated vectors
to form the final representation. Generally, LINE and SDNE
only differ in their exact formulations of the loss functions
and optimizing strategies.

Kipf et al. presented GAE [11] and VGAE [12] in 2016.
Accordingly, GCN [11], a recent method for learning on
graph-structured data, is utilized in these models. GAE targets
to solve problems about semi-supervised learning, and VGAE
tends to apply for unsupervised learning.

Notably, URGE model [8] computes some proximity ma-
trices from original uncertain graphs and then applies matrix
factorization to get embedded vectors. This approach has vari-
ous advantages like the proximity matrices based on expected
Jaccard similarity and probabilistic random walk with restart
can capture the structure of an uncertain graph, which other
approaches could not handle well.

However, most of the existing embedding models are not
designed for uncertain graphs and were not compared with
suitable models to give a general assessment of each model’s
effectiveness on these graphs.

B. Uncertain Network Analysis

There are a couple of notable studies about analyzing and
mining for the networks with probabilities, i.e., structural-
proximity computing [6], [8], [26], frequent subgraph min-
ing [25], [27], clustering [13], [17], and classification [4]. Zou
and Li [26] examine several structural-context similarities for
uncertain graphs such as the cosine similarity, the Jaccard sim-
ilarity [9], and DICE similarity [5]. Additionally, Hu et al. [8]
propose the URGE model for learning a low-dimensional
vector for each node on these kinds of graphs. Besides, Kollios
et al. [13] present a new definition of clustering based on
expected edit distance for probabilistic graphs. However, the
existing studies are still fragmented and not clear systematic
for evaluating the embeddings of uncertain graphs.



C. Data Investigation

Although there is a high amount of data containing the
uncertainties resulting from machine learning algorithms or
statistical models in, e.g., chemistry and biology, not many
datasets can efficiently satisfy the examination conditions. The
most notable in this context is the protein-protein interaction
(PPI) networks, a fruitful dataset regarding uncertain graphs,
which Nepusz et al. aggregated and presented in 2012 [20].
Accordingly, the biologists label all interactions with two
proteins’ probabilities if they likely interact with each other.
Besides that, certain networks are utilized to generate synthetic
probabilistic graphs in several previous works because of the
lack of truthful datasets of uncertain graphs [8], [10], [21].
Notably, Leskovec and Krevl present various networks with
ground-truth communities in their SNAP collections, including
social networks (Youtube, Friendster, Orkut), collaboration
networks (DBLP), hyperlinks (Wikipedia), and product net-
work (Amazon) [14]. These certain networks with ground-
truth labels of nodes or clusters can be utilized to build
synthetic datasets by injecting uncertainty [1].

III. METHODOLOGY

We now describe in detail the framework used for the
comprehensive assessment of the embedding methods. We
start by introducing the methods to be examined. We then
present techniques for dealing with the uncertainty in the input
network. Next, we review the datasets used for the evaluation.
Lastly, we describe the tasks and metrics for quantitative
evaluation of the methods.

A. Examined Methods

We examine various typical node embedding methods from
the four main categories:

• Matrix factorization: including Non-negative matrix fac-
torization [15] and Singular value decomposition [18].

• Conventional node embedding methods: including Deep-
Walk [22], Node2Vec [7], and LINE [23].

• Auto-encoder methods: including SDNE [24], DNGR [2],
and GAE and VGAE [12].

• Methods tailored for the uncertain networks: the
URGE [8] models, which, to the best of our knowledge,
the only work in this direction so far

B. Dealing With Uncertainty

For dealing with the uncertainty in the input network, we
employ the Jaccard, Dice, and random walk-based similarity
[8], [26] to transform the input network. These techniques
compute the structural proximity between nodes in the network
and convert the uncertain networks into certain ones, the
suitable inputs for the examined methods.

C. Datasets

We used both real and synthetics uncertain networks for
evaluating the methods. The real ones are Protein-Protein
Interaction (PPI) networks [16], which were widely used
in previous works on analyzing the uncertain network. We

generated synthetic networks by injecting uncertainty into
certain ones and employed the injection technique in [1]. We
made use of a sub-network induced by top 100 communities
in the Amazon product network [14]. These datasets have both
nodes’ labels and links’ probability to enable us to evaluate
the embedding methods in chosen downstream tasks.

D. Tasks and Evaluation Metrics

Generally, there is no known ground-truth to assess the
embedding vectors directly. Hence, the downstream tasks are
often employed for the indirect evaluation of the embedding
vectors. In this work, we took two of such traditional down-
stream tasks: node clustering and link certainty regression (i.e.,
to estimate the certainty of a link between two nodes based on
the nodes’ embedding vectors). For the first task, we choose
F1 scores as a quality metric in recovering the ground-truth
clusters (i.e., group of the nodes having the same label) to
evaluate the methods. We use the mean squared error (MSE)
and R2-coefficient as metrics for the second task.

To get robust results, for each dataset, each embedding
method, and each number of embedding dimension K (i.e., the
dimension of embedding vectors), we run the method on the
dataset 10 times independently, each with a different random
seed. We then measure the performance of the obtained
embedding vectors from each run in the downstream tasks and
take the average performance across the runs as the method’s
performance on the dataset.

IV. RESULTS & DISCUSSION

We conduct the evaluation described above with a different
number of embedding dimensions K = 8, 16, 32, 64, 128.
For each value of K, to aggregate the performance of the
examined methods across datasets, we first normalize the
methods’ performance on each dataset by dividing them by the
best performance obtained on the dataset. In the next step, the
performances of other methods are measured by their relative
percentage to the respective best. Finally, we take the average
of each method’s runs across PPI datasets and Amazon-based
synthetic datasets as their performance on the two types of
datasets correspondingly.

Figure 1(a) depicts the aggregated performance of the ex-
amined methods on PPI datasets where we do not employ any
pre-processing techniques for dealing with the uncertainty (i.e.,
the links’ probability are considered as their weight). Figure
1(b) shows the performance when we apply Dice similarity
computation for preprocessing the input networks. Similarly,
Figure 2 shows the performance obtained from Amazon syn-
thetic datasets. The figures suggest that: (1) generally, the
existing node embedding methods perform practically well
on uncertain networks only by considering links’ uncertainty
as their weight, (2) the conventional methods (DeepWalk,
Node2vec, and LINE) outperform in node clustering tasks.
We obtained qualitatively similar results to those shown in the
above figures, which imply that the matrix factorization - based
methods are better in link uncertainty regression tasks. This
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Fig. 1: Performance of the examined methods in clustering
task on (a) original PPI networks, and (b) on the PPI networks
with Dice similarity

(a)

(b)

Fig. 2: Performance of the examined methods in clustering
task on (a) original Amazon synthetic networks, and (b) on
the Amazon synthetic networks with Dice similarity

finding is reasonable as these methods are directly optimized
for estimating the weight of the edges.
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