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Abstract—Multi-target multi-camera tracking (MTMCT) is an
important application in intelligent transportation systems (ITS).
The conventional works follow the tracking-by-detection scheme
and use the information of the object image separately while
matching the object from different cameras. As a result, the
association information from the object image is lost. To utilize
this information, we propose an efficient MTMCT application
that builds features in the form of a graph and customizes graph
similarity to match the vehicle objects from different cameras.
We present algorithms for both the online scenario, where only
the past images are used to match a vehicle object, and the
offline scenario, where a given vehicle object is tracked with past
and future images. For offline scenarios, our method achieves
an IDF1-score of 0.8166 on the Cityflow dataset, which contains
the actual scenes of the city from multiple street cameras. For
online scenarios, our method achieves an IDF1-score of 0.75 with
an FPS of 14. Our codes and datasets are available at https:
//github.com/elituan/GraphBasedTracklet MTMCT.

Index Terms—MTMCT, Vehicle Tracking, ITS, Multi-Camera
Tracking.

I. INTRODUCTION

Traffic management at the city level is becoming more effi-
cient thanks to recent research on computer vision to predict
and analyze large traffic flows. Vehicle tracking application
is an essential component in intelligent traffic management.
A vehicle tracking application integrates spatial, temporal,
and visual information of the vehicle and creates the vehicle
trajectory. It can be used to track the trajectory of vehicles in
the city and determine the speed and travel time to optimize
traffic flow. As shown in Figure 1, Multi-Target Multi-Camera
Tracking (MTMCT) aims to extract the vehicle trajectory pass-
ing through a large area from cameras at different locations
and create a complete trajectory on a global scale. One of the
main paradigms in MTMCT is tracking-by-detection where
MTMCT is divided into three main components: (1) object
detection, (2) multi-object tracking (MOT), and (3) trajectory
clustering.

In object detection, an object detector is used to extract
objects in small images called a bounding box (bbox) for each
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Fig. 1. Multi-target camera tracking (MTMCT) - The vehicle is tracked
over cameras.

video frame. Then, MOT tracks the vehicle from the time it
enters the camera view until it leaves the camera view. MOT
uses a tracker such as DeepSORT [1] to match the detected
objects from the frames of the video within a single camera.
The goal of the tracker is to solve the matching problem [2],
[3], where each detected object in a past frame is associated
with one detected object in the current frame using pairwise
object affinities. The result of MOT is tracklets containing all
bboxes of given objects in that camera. The tracker in MOT
use feature learnt from an object Re-identification (ReID)
algorithm. Object ReID aims to find the same exact vehicle
from a large gallery set extracted from multiple cameras with
non-overlapping views. ReID is often based on visual features
only, especially without using technologies such as license
plate readers. Trajectory clustering is the last step of MTMCT,
where tracklets from different cameras are matched to track
the activity of the object on a global scale. This clustering
task is also usually done using the features from an object
ReID application. MTMCT can be executed offline and online,
where in offline information from past and future frames
is used to track a given object, and in online objects are
associated only with past frames.

The rest of the paper is structured as follows: motivation is
explained in Section II; the technical background is described
in Section III; related work is explained in Section IV; Section
V presents our proposed architecture; Section VI describes our
datasets, evaluation metrics, experimental setups, and results;
Section VII presents a discussion of the results; and finally,
Section VIII contains our concluding remarks.

II. MOTIVATION

There is a downside to the traditional MTMCT technique.
As stated in Section I, the MTMCT framework employs the
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object ReID to extract tracklet features, despite the fact that
the object ReID and MTMCT make distinct assumptions.
Specifically, under the premise of object ReID, the given input
is a single image of an object, and the target is finding single
photographs of the same object captured by other cameras
within a big gallery of images. In the trajectory clustering
step of MTMCT, however, the input is a tracklet containing
a collection of photos of the same vehicle captured by one
camera, and the target is searching tracklets (many photos)
of the same input vehicle captured by other cameras within
other tracklets. Most MTMCT current works merely average
the object ReID feature of photos within a tracklet to get the
tracklet’s feature. However, simple averaging may result in
losing crucial associated information of images in the tracklet.
Similar to the MOT problem, due to different postures of the
vehicle in a trajectory, simply averaging the features may not
be the best way to produce the tracklet’s feature.

Our paper focuses on two challenges: solving the afore-
mentioned problems of simply averaging image-level features
in trajectory clustering tasks and proposing a single and
completed framework that can be applied to both online and
offline scenarios with good performance and low latency. To
address these two challenges, we propose a novel technique
for the trajectory clustering step consisting of 3 steps: (a)
bbox feature extraction by Siamese Network, (b) graph-based
tracklet features construction, and (c) trajectory matching
using a graph similarity algorithm. Specifically, for solving
associated information loss, we provide a straightforward but
effective way for constructing the tracklet’s feature in the
form of a graph whose nodes and edges are bboxes and the
Euclidean distance between the embedding features of the
bboxes, respectively. Then the graph similarity algorithms are
used to compare the graph-based tracklet features and match
the vehicles from different cameras. We use different graph
similarities algorithms such as MGMN [4] for offline scenarios
and SimGNN [5] for online scenarios. All features of the
input graphs, including graph topologies and node or edge
attributes, are considered to boost the model’s predictability
when calculating the similarity between two tracklets using
graph structure and neural network model. Particularly, the
graph neural network model must be able to capture both
global-level graph-graph interactions and local-level node-
node interactions, as well as cross-level interactions between
each node of one graph and the other whole graph, to
optimally match the input tracklets graphs. In addition, the
tracklet feature produced by merely averaging the bounding
box image-level feature may not be robust or consistent due
to the varying vehicle postures throughout a trajectory (Fig
2. On the other hand, graph structure maintains these image-
level characteristics distinctly, avoiding the issue mentioned
above. The proposed method is described in full in sections
V-D and V-E. In addition, two ablation studies for both
online and offline scenarios are undertaken in Section VI-D
to demonstrate the effectiveness of our technique.

In summary, the application includes five steps as follows:
(1) The objects and their features are extracted using a vehi-
cle detection and re-identification algorithm; (2) The single
camera tracklets are generated; (3a) The features for each

Fig. 2. Tracklet 15 - Cam 42: Different vehicle postures are captured within
a tracklet by the same camera..

image in these tracklets are extracted using Siamese Network;
(3b) Graph-based tracklet features are constructed; (3c) The
objects from different cameras are matched using the graph-
based tracklet features and the graph similarity algorithms.

The contribution of our paper are highlighted below:
• We propose a method for creating graph-based tracklet

features that utilize the association information between
the bboxes.

• We propose a MTMCT clustering method using
graph similarity algorithms such as MGMN [4] and
SimGNN [5].

• Our offline MTMCT application outperforms the base-
lines and achieves an IDF1 of 0.8166 on the CityFlow
dataset. IDF1 is the ratio of the correct identified object to
the ground truth and average object. Details are explained
in Section VI-B.

• Our online MTMCT application obtains an IDF1 of 0.75
with an FPS of 14.

III. BACKGROUND

Object detection is introduced as the first component of this
section, since the first step of the MTMCT application is to
detect objects from video images and the result of this process
being bbox is used as the base component for the MTMCT
application. Our main contribution is proposing a strategy
for creating tracklets in a graph structure using a Siamase
Network; then using graph similarity learning based on
Graph Neural Network (GNN) to match tracklets from
different cameras. Therefore, the remainder of this section will
introduce the background of these three topics.

A. Object Detection

Deep learning-based object detection has attracted much
attention in recent years. Object detection consists of image
classification (i.e., generating a list of object categories in an
image) and object localization (i.e., creating a bbox indicating
the location of each object category). Current top deep learning
models for object detection are based on R-CNN [6] (Region-
based CNN) or YOLO (You Only Look Once) [7]. While
both models use CNN for object detection, YOLO is more
popular than R-CNN due to its good performance and low
latency. In 2016, the first model, known as YOLOv1, was
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proposed. However, versions of R-CNN such as Fast R-CNN
and Faster R-CNN have also been presented to improve speed
and detection. In this paper, we use YOLO, described in
section V-A.

B. Siamese Network

Many applications of machine learning revolve around
checking whether two objects are similar. For example, (1)
face recognition checks whether an input facial image is
similar to one of the images in the database; (2) question-and-
answer websites check whether a new question is similar to
one of the stored questions; (3) image search engines retrieve
similar images. The strategy is to obtain a vector representation
(also known as embedding) for each object. An example of
“images” is using the output of an intermediate layer of a pre-
trained convolutional neural network (CNN), computing the
similarity between the two vectors, and determining whether
the two objects are similar [].

1) Architecture: A Siamese Network consists of two iden-
tical subnetworks, also called twin networks, connected at
their outputs. The twin networks not only have identical
architecture but also share weights. They work in parallel
and are responsible for creating vector representations for the
inputs. For example, we can use ResNet as twin networks if
our inputs are images. One can think of Siamese Networks
as wrappers for twin networks. They help create better vector
representations by measuring similarities between vectors.

Fig. 3. The Siamese Network.

2) Network Structure: In Figure 3, x1 and x2 are the
two objects we want to compare, and v1 and v2 are the
vector representations of x1 and x2. The architecture in the
comparison layer depends on the loss function and the training
data labels. Since we aim to have as much information as
possible in the vector representations, the comparison layer
usually has a straightforward architecture. Below are some of
the common options:

• Compute the cosine similarity between v1 and v2; the
results are real numbers between -1 and +1 and the loss
function is the mean square error;

• Concatenation of v1 and v2 and absolute difference per
element |v1−v2|, followed by fully connected layers and
a softmax layer. It is useful for multiclass classification,
and the loss function is the cross-entropy;

• Calculate the Euclidean distance (also other distances are
accepted) between v1 and v2, where the loss function is
the contrastive loss or triplet loss.

C. Graph Similarity Learning Based on Graph Neural Net-
work

Similarity learning methods based on Graph Neural Net-
works (GNNs) aim to learn graph representations through
GNNs while performing the similarity learning task in an
end-to-end manner [8]. With a pair of input graphs, GNN-
based graph similarity learning methods first apply multilayer
GNNs with weights to learn the node or graph features in the
encoding space of the input graphs. Accordingly, the learning
of each graph in a pair could influence each other by the GNNs
of the two graphs sharing weights and/or interacting with each
other. Then, via an output matrix or vector representation
for each graph by the GNN layers, a dot product layer or
fully connected layers can be used to calculate or predict the
similarity values between two graphs. In the final step, the
similarity scores for all graph pairs and their ground truth
labels are used in a loss function to train the model with
weighted parameters [5], [9], [10].

In this study, we focus on two different aspects of graph
similarity learning: (1) the GNN models are able to improve
the accuracy compared to other state-of-the-art frameworks,
and (2) the predicted results of the GNN models could be
responsive to the real-time system. Below are two approaches
for each of the above aspects.

(1) Accurate Approach (offline): All properties of the input
graphs, including graph topologies and node or edge attributes,
are considered to improve the model’s predictability. The work
adapts Siamese GNNs by incorporating adaptation mecha-
nisms during learning with GNNs, and cross-graph interactions
are used in the graph representation learning process. Finally,
the BiLSTM [11] model aggregates the cross-level interaction
features from the node-graph matching layer before learning
the similarity score in the final prediction layers. Therefore,
this approach is suitable for the offline scenario where there is
enough computation time to derive the complex trained model.

(2) Real-Time Approach (online): Unlike the accurate
approach, this approach ignores the node attributes of the input
graph to reduce the computation time. The work combines
Graph Neural Networks and Convolutional Neural Networks
(CNNs) for graph similarity prediction. First, GNNs are used
to learn graph representations, and then the learned represen-
tations are used in CNNs to predict similarity scores. The
model becomes an end-to-end learning system with additional
fully linked layers to predict similarity values. Accordingly, the
entire process of predicting similarity values can be performed
in less than five seconds while still maintaining an acceptable
level of accuracy compared to the accurate approach presented
above. Thus, this approach is suitable for the online scenario.

IV. RELATED WORK

The goal of MTMCT is to track object activity across
multiple cameras.

In addition, recent works use the spatio-temporal constraints
and traffic rules as filters to reduce the matching space such
as [12], [13]. Other works focus on the architecture such as
the graph-based methods GCNNMatch [14] or GNN3DMOT
[15].
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In this paper, MTMCT base that has the best performance
is used as baseline described in section VI-C. Below, we also
provide related work of two main components of MTMCT,
MOT and subcomponent of trajectory clustering, i.e, graph
similarity.

A. Multi-Object Tracking (MOT)
MOT applications aim to track the movement of the object

with a single camera. Tracking-by-detection [16] has been
the main trend in the MOT application for many years.
This paradigm includes three main stages: (1) image object
detection, (2) feature extraction, and (3) data association.

In the image object detection stage, the objects in each video
frame are detected as bboxes. The most common detection
algorithms are YOLO [7] and related algorithms such as
YOLO-LITE [17] for non-GPU computers, and Tinier-YOLO
[18] for real-time applications.

In the second stage of feature extraction, features of appear-
ance, motion and time are extracted from the detected bboxes
and used to calculate the similarity value between pairs of
objects. The bboxes that belong to the same object are com-
bined into a tracklet. For feature appearance, much research
has been done to learn image representation, including auto-
encoder [19], [20], spatial attention [21], feature pyramids [22]
and Siamese Network [22]–[24]. For motion features, Kalman
filters [1] and LSTM [25] are usually used. A number of
methods have been developed for computing similarity values
using metrics such as cosine similarity, Euclidean distance,
intersection over union, Siamese [26], and bilinear [27].

Object Re-identification: Object Re-identification (ReID) is
a clustering task that attempts to match targets in different
scenes with different factors such as viewpoint, transparency,
and time of day. These targets were detected using the object
detection algorithm mentioned in III-A. Object ReID is an im-
portant component for common computer vision applications
including vehicle tracking, people tracking, and face recogni-
tion. In the past, most of the work focused on person ReID.
In recent years, thanks to the development of smart cities
and intelligent transportation systems (ITS), vehicle ReID has
gained more and more attention. A number of works have
been done to improve accuracy by using additional information
such as license plate and vehicle model in the work of Liu et
al. [28], [29]. Other methods focus on architecture such as
transformer (TransReId) of He et al. [30], and rigid structure
prior of Jiang et al. [31].

Data association is viewed as a clustering task, where
bboxes are grouped for each object in a tracklet. Recent work
implements this task using Hungarian algorithms [1], dynamic
programming [32], reinforcement learning [33], and group-
sensitive triplet embedding [34]. In other research [35], the
traffic rule has been used to reduce the ID switch error that
splits a single tracklet in a camera into many tracklets. In
addition, [36] uses license plate data to enhance the tracking
result.

B. Multi-target Multi-camera Tracking (MTMCT)
Similar to the MOT problem, MTMCT attempts to track the

movement of objects across many cameras. After obtaining

the MOT result, the standard technique calls for a subsequent
step of trajectory clustering. In this step, a tracklet feature
construction approach is chosen to extract the tracklet feature,
and a metric is determined to compute the similarity between
tracklet features.

For feature construction, the most common method is av-
eraging features of all bboxes within a tracklet [12], [37].
Another variation method is weighted averaging, such as
[35] utilizes the structure of temporal attention model [38] to
calculate the weights of bounding box features based on
spatial and temporal information; then weighted average these
bounding box features to obtain the tracklets features. In other
research, [39] suggested a method to employ batch hard triplet
loss [40] to compute the clustering loss and construct the
tracklet’s feature, with the goal of bringing the query closer to
the positive set in the same camera than in separate cameras.
In another work, [41] dismisses obstacle-occluded detection
bounding boxes using a background filtering algorithm and
averaging the features of the remaining detection bounding
boxes. Recently, the authors of [42] multiply the distance
between the most similar detection pair between two tracklets
and the distance of the mean of all features to generate a com-
bined distance matrix. Concerning the similarity metric used
to compare tracklet’s features, the two most prevalent metrics
are: cosine similarity [12], [37], [39], [42], and Euclidean
distance [41], [43], [44].

Unlike existing works, our method uses the graph struc-
ture to construct the tracklet feature and a graph similarity
algorithm to learn the similarity between tracklets. We assume
that the above technique can utilize the associated information
of bboxes in tracklets. In addition, when calculating the
similarity between two tracklets using a graph-based feature
and graph similarity method, all aspects of the input graphs,
including graph topologies and node or edge attributes, are
taken into account to increase the predictability of the model.
Specifically, the graph neural network model must be able to
capture both global-level graph-graph interactions and local-
level node-node interactions, as well as cross-level interactions
between each node of one graph and the other whole graph, to
match the input tracklets graphs with the highest performance.
Furthermore, due to the various vehicle postures along a
trajectory, the tracklet feature obtained by simply averaging
the bounding box image-level feature may not be robust
or consistent. Graph structure, on the other hand, preserves
these image-level features uniquely, avoiding the difficulty
mentioned earlier.

C. Graph Neural Network Based Tracking
Utilizing neural networks to handle data with a graph struc-

ture was the initial application of GNNs [45]. The core idea is
to design a graph with interconnected nodes and edges and to
update node/edge properties based on these interconnections.
In recent years, various GNNs (e.g., GraphConv [46], GCN
[47], GAT [48], GGSNN [49]) have been proposed, each with
a distinct feature aggregation rule that has been demonstrated
to be effective on a variety of tasks, including object tracking.

For instance, in GNN3DMOT [15], the authors design an
unweighted graph in which each node represents an object
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feature at a particular frame, and each edge between two nodes
at different frames represents the matching between detections.
Specifically, they are utilizing appearance and motion data to
build the node feature. Furthermore, the distance between
the detection centers of the two connected nodes should be
less than a predetermined threshold. Then, they employ GNNs
to update node features using object relation modeling. Each
node can update its feature by aggregating features from other
nodes at every tier of the GNNs and define the data association
task as a problem of edge classification using GNNs.

Similarly, in the paper [50], the nodes represent the feature
of the bounding boxes that integrate appearance and motion
information, and the edges indicate the spatial-temporal in-
teraction between nodes. These spatial-temporal relationships
serve as the basis for an adjacent matrix. The GNN is fed this
adjacent matrix and matrix of features. Then, GNN propagates
node features across a graph’s structure and discovers the
association between nodes. The nodes feature is then projected
onto a space with a high dimension. The features inside the
same aggregate range can be interpreted as belonging to the
same object and are linked sequentially on the timeline to
create a complete trajectory.

In a different work [51], the author employs the tracking-by-
detection approach and formulates the association task graph-
ically as a Maximum Weighted Bipartite Matching problem.
Specifically, the similarity between current tracklets and newly
detected objects must be learned at each time frame. These
similarity scores are computed utilizing two models, a Siamese
Convolutional Neural Network for the appearance feature and
an LSTM for the motion feature. Then, a set of fully connected
layers is utilized as the learnable measure to combine these
two similarity scores. The assignment task was solved using
a GNN trained with three loss functions, including a binary
cross-entropy loss indicating whether the detection is a match
or mismatch, a cross-entropy loss for multi-class classification,
and a mean square error (MSE) called birth & death loss that
enforces the output vector to approach negative infinity.

Another approach proposed in [52] uses two GNNs, one for
learning appearance features and another for learning motion
features. Then, similar to [15], the authors formulate data
association as an edge classification problem using GNNs,
where each node represents an object, and each edge relating
to two nodes denotes the similarity between new detection and
the current tracklet.

In [53], the authors address the MOT issue using Message
Passing Networks (MPNs) [54], [55] in an undirected graph.
The nodes are bounding boxes’ appearance features extracted
by CNN, and the edges are formed so that every pair of nodes
from different frames are connected. Edge value is computed
by passing the bounding box’s relative size, position, and time
distance into an MLP. According to the MPNs model, Nodes
communicate appearance information with their connected
edges, while edges share geometry information with their
incident nodes. Additionally, each edge has a binary variable
with a value of 1, indicating that two nodes belong to the
same trajectory and are consecutive, and have a value of 0,
denoting all other cases. Then, they approach the MOT task as
a classification problem using edges, where the targeted label

is specified above.
The authors in [56] assume that the MOT result is unreliable

enough to input so that MTMCT could inherit the false
positives and fragments problems of MOT. They then solve
the problem by integrating these two models and treat data
association as a global MAP problem inspired by the same
MAP formulation from [57]. Then the optimal solution is
the maximum posterior probability of a set of tracklets with
the minimum cost. Specifically, The objective of the data
association is to maximize the posterior probability of the
new tracklets given the existing tracklet set under the non-
overlapping constraints.

In our paper, we propose to construct the tracklet as a graph
where nodes are bbox’s appearance feature extracted by a
Siamese Network and edges are the similarity between nodes,
then use a graph similarity algorithm to compute the similarity
between tracklets and perform the multi-camera matching task.

D. Graph Similarity

Previous GNN-based work on learning graph similarity
can be grouped into two main categories based on how
graph similarity or proximity is used in learning, including
GNN-CNN mixed models for graph similarity prediction and
Siamese GNNs-based graph matching networks.

Bai et al. [58] proposed GSimCNN, a model consisting of
three stages for pairwise graph similarity prediction. Multi-
layer graph convolutional networks (GCNs) first generate node
representations, then the inner products between all possible
pairs of node embeddings between two graphs from differ-
ent GCN layers are computed. Finally, multiple independent
CNNs and fully linked layers process the similarity matrices
from different layers to predict the final similarity value.

Ktena et al. [59] propose a model that uses the siamese
graph convolutional neural network to learn graph similarity.
This model considers a pair of graphs as inputs and applies a
spectral GCN to generate a graph embedding for each input
graph. Similarly, Ma et al. [50] propose a higher-order Siamese
GCN model that combines the proximity of higher-order nodes
with GCNs to apply higher-order convolutions to each input
graph for the graph similarity learning task.

Additionally, some recent graph matching networks [9], [10]
have focused on the image matching task as an application in
the fields of computer vision, where images are transferred to
graph topologies. Remarkably, while the nodes of the graph
converted from the input image represent the unary descriptors
of extracted feature points of the image, the connections
are utilized for encoding the pairwise relationships among
different feature points in that image. Thus, the image feature
matching problem can be reformulated as a graph matching
problem based on the new graph representation.

V. PROPOSED ARCHITECTURE

We propose an architecture based on the tracking-by-
detection scheme [60], which includes three steps as illustrated
in Figure 4. First, in the (1) vehicle detection step, vehicles
are detected as bboxes by Yolo5 from video images. Then,
as mentioned in section IV-A, the bboxes are associated to
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Fig. 4. Proposed Architecture. The architecture includes three steps. In (1), the vehicle is detected in the vehicle detection step. In (2), tracklets are generated
based on the detection result in the vehicle tracking step using a camera. Then, a feature for each corresponding bbox is learned using the Siamese Network in
(3a). Next, graph-based tracklet features are created in the (3b) step. Finally, in (3c), the multi-camera tracklets matching step, the similarity between tracklets
is calculated and used for multi-camera tracklets matching.

generate corresponding single-camera tracklets in (2) vehicle
single camera tracking model using FairMOT [61]. In step
(3) - trajectory clustering, we present it in three sub-steps: (3a)
feature extraction step, we learn the features using Siamese
Network for each corresponding bbox. Then, we use the graph
structure to construct the feature for each tracklet in the step
(3b) graph-based tracklet feature construction. Finally, in
the (3c) multi-camera tracklets matching step, the similarity
between the tracklets is computed using the graph similarity
algorithm. Then, these tracklets from different cameras are
matched using these similarity scores to generate the tracklets
for each vehicle in multi-cameras. Each step is described in
detail below.

A. Step 1 - Vehicle Detection

In vehicle detection, the vehicle is detected from the video
images as explained in section III-A. We use YOLOv5, which
was published in 2020 by Glenn Jocher. There are already
more than 240 research papers on this architecture. YOLOv5
is based on the PyTorch framework. It is the latest version
of the YOLO object recognition model developed through
the continuous work of 58 open source contributors. There
are some model configuration files and different versions of
the object detector. The present implementation uses the pre-
trained model YOLOv5l6, which is the largest model and
provides the best performance. The result is in the format of
vectors:

[tx, ty, tw, th, classProb],

where tx, ty are box center x and y coordinate in the image
of video frame, tw, th are the weight and height of the box,
classProb are the class probability.

B. Step 2 - Multi-Object Tracking

This task is called Multi-Object Tracking (MOT), which is
explained in section IV-A. To track multiple targets within a
single view, we follow the tracking-by-detection paradigm to
combine frame-level detection results into tracklets. Specif-
ically, we use FairMOT [61], the latest tracking algorithm

proposed by Zhang et al., to create tracklets. It incorporates a
Kalman filtering algorithm with a cascade matching algorithm
to estimate the position of objects from noisy detections. One
of its main advantages is the inclusion of deep visual features
as association criteria, which are much more informative than
simple bounding boxes. As shown in Figure 4, the corre-
sponding vehicle images are extracted from the recognition
component results and then used as input to the component
to track the vehicle with a camera. Finally, the tracklets
containing the triplet vectors of each object are generated:

Tid = [Tid,i : (ti, bi, fi)],

where Tid is the tracklet with a given id, bi is the bbox
information as presented in section V-A, ti is the time frame,
and fi is the appearance feature for the corresponding bbox.

C. Step 3a - Feature Extraction

We presented the standard architecture of the Siamese
Network in section III-B. In this section, we explain the
details of our implemented architecture, which consists of two
symmetric CNNs with identical structures and parameters, i.e.,
the Twin Networks from Figure 3. Each CNN follows the
ResNet-50 architecture [62]x with 50 layers (counting only
the convolutional layers and the fully connected layers) and
contains 3 residual units (RUs) outputting 256 feature maps,
then 4 RUs with 512 maps, 6 RUs with 1, 024 maps, and
finally 3 RUs with 2, 048 maps. The initial parameters of
each ResNet-50 are the initial values of the original ResNet-
50 trained on 1, 000 classes of the dataset ImageNet [63].
The final structure of each twin Siamese network consists
of the ResNet-50 architecture augmented with two additional
deeper dense layers of d neurons fully connected to the ReLU
activation function, each added at the top.

The top layer is used to obtain the representation of the
feature vector vi for the input image xi with d dimensions.
Thus, this workflow generates different representations for
each input image, i.e., the feature vectors. The feature vectors
are then used to compute the loss used in the backpropagation
for the learning process.
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Network Training: For each Twin Network, we freeze the
weights of all pre-trained layers of the ResNet-50 model so as
not to affect the weights that the model has already learned,
and add our own 2 dense layers with d neurons. We train
the Siamese network by determining the Euclidean distance
between the output image representations. We use the standard
formulation for triplet loss [64]. This loss function considers
triplets (xa , xp , xn) as input. Here xa is an anchor object, xp

is a positive object (i.e., xa and xp belong to the same class),
and xn is a negative object (i.e., xa and xn belong to different
classes). Our goal is to have the vector representation va be
closer to vp than it does to vn. The final formula is:

L = max(0, m+ ||va − vp|| − ||va − vn||). (1)

During the training process, we extracted 100, 000 triplets
(xa , xp , xn) that serve as input to the Siamese Network.
Each CNN outputs different vectors (va , vp , vn) of length
d from the last layer, which are used as representations for
the input images. The Siamese Network is trained simply by
inputting a triplet of images and backpropagating the losses
through the layers.

D. Step 3b - Graph-Based Tracklet Feature Construction

As mentioned in the III-C section, we build the tracklet
features in a graph structure to use the association information
in the tracklet and match the tracklets based on computing
the graph similarity between them. The nodes are the feature
vectors (embeddings) from the Siamese Network and the edges
are the Euclidean distance between two nodes. Only the edges
larger than a threshold τ remain.

The decision to set the distance threshold τ to 0.5 was
determined by an empirical tuning proposed in [65], [66].
According to human judgment, the distance value of 0.5
proved to be the boundary line between the same and different
images: Image pairs with a distance of more than 0.5 were
mostly perceived as different, whereas those with a distance
of less than 0.5 were mostly classified as identical. In other
words, at a distance of 0.5 or more, a person can recognize that
two images are similar but not identical. We also experimented
with different thresholds.

E. Step 3c - Multi-Camera Tracklets Matching Using Graph
Similarity

To increase efficiency, a spatial-temporal filter is applied
before matching. First, the camera image is divided into 4
crossroad zones. Take camera 43 as an example in Figure 6:
4 colors are used to divide the different zones (white: zone 1;
blue: zone 2; green: zone 3; red: zone 4). Since all cameras
are located on the main road, as shown in Figure 5, zone 3 and
zone 4 are connected to the main road, while zone 1 and zone
2 cross the main road. More precisely, zone 3 is connected to
the next camera (camera 44), while zone 4 is connected to the
previous camera (camera 42).

In the test scenario, there are six cameras with IDs 41
to 46. They are arranged in a street as shown in Figure
5. Therefore, we need to match tracklets of cameras with

TABLE I
CONFLICT TABLE FROM [12] WHEN TWO TRACKLETS SASTIFY THREE
CONDITIONS OF CROSSROAD ZONE, CAMERA AND TIME, THEY DO NOT

MATCH.

Crossroad Zone Camera Time Matching
zis = 1 or 2 - tje < tis False

zis = 3 cj > ci tje > tis False
zis = 4 cj < ci tje > tis False

zis = 1 or 2 - tjs > tie False
zis = 3 cj > ci tjs < tie False
zis = 4 cj < ci tjs > tie False

consecutive IDs. Before matching, we extract the information
about the start/end time [ts, te] and start/end zone [zs, ze] for
all tracklets Tid. Then we use the conflict table in table I
to filter all tracklet pairs from two cameras with consecutive
ID. Specifically, a tracklet pair is not matched if the three
conditions of intersection zone, camera, and time in the
conflict table are satisfied. This procedure significantly reduces
the original search space.

To explain the idea of this filtering process with the conflict
table, we use an example of matching tracklets from camera
42 and camera 43. As shown in Figure 6, we only need to
filter 2 groups of vehicles from camera 42 and camera 43:

• Group 1: vehicles move from camera 42 to camera 43.
• Group 2: vehicles move from camera 43 to camera 42.

In order to filter these 2 groups. The spatial-temporal filtering
is applied. As shown in Figure 7, the spatial filtering is applied
as follows:

• Group 1: tracklets ending in zone 3 of camera 42 are
matched with tracklets starting in zone 4 of camera 43.

• Group 2: tracklets ending in zone 4 of camera 43 are
matched with tracklets starting in zone 3 of camera 42.

After the spatial filtering, we apply the temporal filter as
follows:

• Group 1: the ending time of tracklets in camera 42
(ending in zone 3) must be earlier than the starting time
of tracklets in camera 43 (starting in zone 4).

• Group 2: the ending time of tracklets in camera 43
(ending in zone 4) must be earlier than the starting time
of tracklets in camera 42 (starting in zone 3).

Fig. 5. Camera Locations - Testing scenario includes 6 camera from ID 41
to 46.

After reducing the search space by applying the above
filters, the similarity scores between graph-based tracklet
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Fig. 6. Crossroad Zone Visualization of camera 43 from [12]. The video
image is divided into 4 zones to track the tracklet. Zone 4 and zone 3 are the
path to the previous and next camera. Zone 1 and zone 2 is the way to leave
the main road.

Fig. 7. The position of camera 43, camera 42 and their zones. There are 2
groups of vehicles moving between camera 43 and 42. Group 1 moves from
zone 4 of camera 43 to zone 3 of camera 42. Group 2 moves from zone 3 of
camera 42 to zone 4 of camera 43.

features is computed using one of the folliwng methods
depending on being an offline or online scenario.

Accurate Approach (offline): It requires the graph neural
network model to be able to capture both global-level graph-
graph interactions and local-level node-node interactions while
also considering cross-level interactions between each node of
one graph with the other whole graph to achieve the highest
performance of matching the input tracklets graphs. Therefore,
we custom and apply MGMN [4], a multilevel graph matching
network suitable for these criteria, to our accurate approach.
In particular, we combine a GraphSAGE layer [67] with a
GCN layer [47] to learn the cross-level interaction in the node-
graph matching network instead of a three-layer GCN as the
original MGMN. The modification based on the combination
of these two different layers allows the network to aggregate
more feature information from the local neighborhood of each
node. We also present other variants of MGMN in Section VI
for a comprehensive evaluation.

Real-Time Approach (online): Although MGMN results
outperform the state-of-the-art approaches for matching multi-
camera tracklets (see Section VI), this graph neural network
needs hours to compute the graph similarity scores, primarily
suitable for offline prediction without requiring an instant
response. Thus, to adapt our framework for the real-time
scenario, we replace MGMN with SimGNN [5], a simpler
GNN model ignoring the node features and only focusing on
the graph topologies of each pair of input graphs, to learn

the graph similarity. While the accuracy of this approach is
still acceptable compared to the above accurate approach, 6%
less in terms of IDF1-score, one of the notable advantages of
SimGNN is that it achieve an FPS of 14 which is fast enough
for the real-time scenario (see Section VI-D). In addition,
most current state-of-the-art approaches for the multi-target,
multi-camera object tracking problem are offline scenarios, not
applicable for the online scenarios. Therefore, to the best of
our knowledge, we are the first to create an approach that is
able to handle multi-target multi-camera tracking for vehicle
objects with an FPS of 14 and high accuracy (reaching an
IDF1-score of 0.75).

VI. EXPERIMENTS AND RESULTS

A. Dataset

In the experiment, we use the CityFlow dataset [68], which
captures the actual scenes of the city from multiple street
cameras. Furthermore, CityFlow covers different types of
streets such as intersections, highways, and road extensions.
Both the training and validation sets contain 3.25 hours of
traffic videos captured from 40 cameras at ten intersections.
The test set contains 20 minutes from six cameras at six
intersections.

B. Evaluation Metrics

For the evaluation metrics, we use precision, recall, and
IDF1 [69] to evaluate the performance of our method. IDF1
is the ratio of correctly identified objects to ground truth and
average objects. In detail:

IDF1 =
2 ∗ TP

2 ∗ TP + FP + FN
,

where TP is true positive, FP is false positive and FN is false
nagative matching.

C. Baselines

For offline scenario, our work builds on the foundation of
mcmt baseline [12]. In general, mcmt includes 3 steps. First
is the vehicle detection step, where Yolo5 is used to detect
vehicles as Bboxed. Second is the Vehicle single camera
tracking (or MOT) step, where FairMOT [61] is used to
generate tracklets for each vehicle on each camera. Third is
the multi-camera tracklets matching step, where the filter is
applied to reduce the space for matching the tracklets. Then
the similarity between the tracklets is calculated using the
CNN features from the MOT step. Finally, these tracklets from
different cameras are matched using the similarity score to
create the tracklets for each vehicle with multiple cameras. In
general, our method utilizes step 1 (vehicle detection) and step
2 (single camera vehicle tracking) of mcmt but we apply a
novel method for step 3.

For the online scenario, we compare our work with other
online tracking algorithms such as TADAM [70] and BLSTM-
MTP [71]. TADAM is a model with a synergy between
position prediction and embedding association. Specifically,
prediction uses attentional modules to focus more on targets
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and less on distractors. Such reliable embeddings can then
improve identity-awareness perception through memory aggre-
gation. At BLSTM-MTP, they focus on solving the problem
of simultaneously considering all tracks in memory updating
with a spatial overhead by using a novel multi-track pooling
module.

D. Experimental Results

Several ablation studies have been performed. The experi-
ment is divided into an online and an offline application.

1) Online Scenario: For the online scenario, we first study
the result with two Siamese Network architectures: ResNet and
Efficient Net. The result is shown in Table IV. For features
of dimension 1024, ResNet achieves a better result, while
Efficient Net has a higher FPS. Then, we keep the Siamese
Network Backbone as ResNet and increase the dimension of
the feature to 2048 and 4096 to determine which is best for
the feature. Shown in Table IV, surprisingly, the feature with
dimension 2048 obtains the best result of 0.7521 IDF1, while
the feature with dimension 4096 obtains an IDF1 value of
0.7357. The FPS of our best setting is from 14.03, which is
suitable for a real-time scenario.

The distance threshold τ in the construction of the graph
feature is set to 0.5 by an empirical tuning proposed in
[65], [66]. However, to confirm this decision, we perform
an ablation study with different thresholds. Specifically, we
study the final result with thresholds 0.4, 0.5, and 0.6. These
experiments use ResNet with 2048-dimension of Siamese
Network backbone. From the result of Table II, a threshold
of 0.5 yields the best result of 0.75 IDF1, which is consistent
with previous work [65], [66].

TABLE II
ONLINE METHOD - RESULT ON DIFFERENT GRAPH CONSTRUCTION

THRESHOLDS

Threshold τ IDF1
0.4 0.7325
0.5 0.7500
0.6 0.7439

To demonstrate the effectiveness of our proposed method,
we compare our approach (graph feature for feature creation
and graph similarity for similarity computation) to existing
methods. We choose some code-available techniques as men-
tioned in Section IV-B includes: mcmt [12] which calcu-
late the mean of features of all bboxes within a tracklet,
UWIPL [35] which use an attention model to calculate the
weights of bounding boxes, then weighted sum these bounding
box features to calculate the tracklet’s features, BUPT [39]
which utilize batch hard triplet loss as clustering loss to
construct tracklet’s features, and IOSB [41] which multiply
the distance of the most similar detection pair between two
tracklets with the distance of the mean of all features to yield
a combined distance matrix. In the methods, cosine similarity
or Euclidean distance is typically used to compute the simi-
larity between two tracklets regarding similarity computation
methods. The result presented in Table III indicates that our
method outperforms all other settings by 3.04% of IDF1.

TABLE III
ONLINE METHOD - RESULT ON DIFFERENT FEATURE CONSTRUCTING

AND SIMILARITY METRIC

Team Name Feature Constructing Similarity Metric IDF1
UWIPL [35] Weighted Average Euclidean distance 0.7135
BUPT [39] Batch Triple Loss Cosine Similarity 0.6962
IOSB [42] All Average*Best Pair Cosine Similarity 0.7204
mcmt [12] All Average Cosine Similarity 0.7217

Ours Graph-base Graph Similarity 0.7521

Baseline Comparison: We also check the performance of
other online tracking algorithms such as TADAM [70] and
BLSTM-MTP [71]. Since these two algorithms were devel-
oped for pedestrian tracking, the results are not competitive.
TADAM achieves an IDF1 of 0.53, while BLSTM-MTP
achieves an IDF1 of 0.61. More importantly, the FPS of
TADAM and BLSTM-MTP are 13.30 and 8.55, respectively.
In summary, the results in Table IV show that our FPS is
higher, while the IDF1 outperforms the existing works.

TABLE IV
ONLINE METHOD - COMPARISON TO OTHER ONLINE BASELINES.

Method FPS IDF1

Baselines TADAM [70] 13.30 0.5347
BLSTM-MTP [71] 8.55 0.6167

Ours

SimGNN - Efficient Net
(1024-dimension Feature) 16.70 0.6530

SimGNN - ResNet
(1024-dimension Feature) 15.63 0.7316

SimGNN - ResNet
(2048-dimension Feature) 14.03 0.7521

SimGNN - ResNet
(4096-dimension Feature) 12.16 0.7357

2) Offline Scenario: For the offline algorithm, we study
various optimizations for the Siamese Network. In particular,
we keep ResNet as the backbone with 256-dimension features
and examine the result of the different optimizations: RM-
Sprop, Adam, and AdamW. From the result of Table V, we
find that Adam optimization gives the best result of 0.7832
IDF1. Therefore, we keep Adam as the default optimization
for all subsequent experiments.

TABLE V
OFFLINE METHOD - RESULT ON DIFFERENT OPTIMIZATION

Optimization IDF1
RMSprop 0.7805

Adam 0.7832
AdmaW 0.7626

Next, the ablation study is performed on different MGMN
layers. These experiments use the Resnet backbone with
256-dimension feature and Adam optimization as the default
setting. The results of the four set layers (GGNN, GIN,
GraphSAGE, GCN + GraphSAGE) are shown in Table VI.
GCN + GraphSAGE layers achieve the best result of 0.7866
IDF1 score. Therefore, GCN + GraphSAGE is kept as the
default setting for the following experiments.

Next, we examine the effects of the different dimensions of
the Siamese Network on the final result. After keeping all the
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TABLE VI
OFFLINE METHOD - RESULT ON DIFFERENT MGMN LAYER

Method IDF1
MGMN (original) - GCN layers 0.7725

MGMN - GGNN layers 0.7532
MGMN - GIN layers 0.7487

MGMN - GraphSAG layers 0.7754
MGMN - GCN + GraphSAG layers 0.7866

default parameters, we increase the dimensions of the Siamese
Network feature from 256 to 2048. The results in Table VII
show that we achieve an increasingly better IDF1 score as the
feature dimension is increased. Our method achieves an IDF1
score of 0.8166 with features of dimension 2048. Therefore,
we keep the 2048 dimension of the features as the default
setting. In this experiment, we also calculated the precision
and recall to confirm the performance of the final setting.

TABLE VII
OFFLINE METHOD - FEATURE DIMENSION ABLATION STUDY

Method Precision Recall IDF1
MGMN (256-dimension Feature) 0.8549 0.7437 0.7866
MGMN (512-dimension Feature) 0.8835 0.7728 0.8076
MGMN (1024-dimension Feature) 0.9022 0.7514 0.8125
MGMN (2048-dimension Feature)) 0.8902 0.7964 0.8166

An ablation study at different thresholds is also performed
using the offline algorithm. Similar to the online ablation
study, we examine the final result with thresholds τ of 0.4, 0.5,
and 0.6. In these experiments, the standard parameters men-
tioned above are used. From the result of Table VIII, the
threshold of 0.5 yields the best result of 0.8166 IDF1, which
is consistent with previous work [65], [66], [72].

TABLE VIII
OFFLINE METHOD - RESULT ON DIFFERENT GRAPH CONSTRUCTION

THRESHOLD

Threshold τ IDF1
0.4 0.7865
0.5 0.8166
0.6 0.7697

Similar to the online scenario in Table III, we also com-
pare our proposed method (graph feature for feature cre-
ation and graph similarity for similarity computation) with
existing methods as mcmt [12], UWIPL [35], BUPT [39],
and IOSB [41] for the offline scenario. The result presented
in Table IX shows that our method outperforms all other
settings by 1.51% of IDF1. This proves that applying graph
similarities based on GNNs can potentially improve the overall
performance of MTMCT systems in both online and offline
scenarios compared to the existing approaches.

Baseline comparison: While the baseline mcmt achieves
an IDF1 of 0.8095 in the CityFlow dataset, our method
outperforms it with an IDF1 of 0.8166 using the same data. In
addition, we compare the performance of our algorithm with
other leaderboards of 2021 AI City Challenge Track 3 in Table

TABLE IX
OFFLINE METHOD - RESULT ON DIFFERENT FEATURE CONSTRUCTING

AND SIMILARITY COMPUTATION METHOD

Team Name Feature Constructing Similarity Metric IDF1
UWIPL [35] Weighted Average Euclidean distance 0.7916
BUPT [39] Batch Triple Loss Cosine Similarity 0.7863
IOSB [42] All Average*Best Pair Cosine Similarity 0.8015
mcmt [12] All Average Cosine Similarity 0.8003

Ours Graph-base Graph Similarity 0.8166

X. Our method outperforms all teams in the leaderboards. The
qualitative result is visualized in Figure 8.

TABLE X
OFFLINE METHOD - COMPARISON TO 2021 AI CITY CHALLENGE

LEADERBOARD

Team IDF1
mcmt 0.8095

fivefive 0.7787
CyberHu 0.7651

IOSB 0.691
DAMO 0.6238

Janus Wars 0.5763
aiforward 0.5654

BUPT-MCPRL2 0.5534
oOIAMAIOo 0.5458

Dukbaegi 0.5452
Ours 0.8166

Fig. 8. Qualitative results of our proposed model: Each row is a true positive
tracklet matching from camera 42 to camera 43. Each tracklet includes 15
bboxes.

VII. DISCUSSION AND FUTURE WORK

MTMCT is an essential task for an intelligent traffic
management system. It can be used to track the trajectory
of vehicles in the city and determine the speed and travel
time to optimize traffic flow. Our proposed method uses
the association information between the bboxes of a tracklet
by creating a graph-based tracklet feature. Then, the graph
similarity learning algorithms are used to obtain the similarity
value and perform the matching. We currently focus on vehicle
tracking and achieving a better performance in both online and
offline scenarios. In addition, the system is also suitable for
pedestrian tracking because it has the advantage of using body
moment matching information. Specifically, a person’s body
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parts can be used as nodes to create a graph-based structure for
that person. Then we can apply a similar technique to match
the person from the previous to the current frame. Thus, one
potential direction for future work is to expand our framework
to apply to pedestrian tracking.

VIII. CONCLUSION

In this paper we propose a novel MCTM algorithm in
MTMCT system. Our MCTM algorithm is based on building
the tracklet feature as graph structure, then using graph simi-
larity scores to match the tracklets from different cameras. We
introduce the strategy for both online and offline scenarios.

In the offline scenario, information from both past and
future frames is used to track a particular object. Since the
offline application needs to focus on improving the matching
result, the accurate approach of the graph similarity learning
algorithm like MGMN is customized and applied. Our result
in the offline scenario outperforms the baseline of mcmt and
other previous works on the CityFlow dataset with an IDF1-
score of 0.8166.

In the online scenario, where objects are only associated
with past frames, the FPS should be fast enough to be used in
a real-time application. Therefore, we customize SimGNN as a
learning graph similarity for the real-time approach. Our real-
time approach outperforms the baseline with an IDF1-score of
0.7521 and an FPS of 14.

ACKNOWLEDGEMENT

This material is based upon work partially supported by
the U.S. Department of Energy’s Office of Energy Efficiency
and Renewable Energy (EERE) under the Award Number DE-
EE0009208. This report was prepared as an account of work
sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof,
nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommen-
dation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

This work was also supported by the European Union’s
Horizon 2020 research and innovation program under grant
agreement No. 833635 (project ROXANNE: Real-time net-
work, text, and speaker analytics for combating organized
crime, 2019-2022).

REFERENCES

[1] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” in 2017 IEEE international
conference on image processing (ICIP). IEEE, 2017, pp. 3645–3649.

[2] M. Fisichella, “Unified approach to retrospective event detection for
event- based epidemic intelligence,” Int. J. Digit. Libr., vol. 22,
no. 4, pp. 339–364, 2021. [Online]. Available: https://doi.org/10.1007/
s00799-021-00308-9

[3] A. Ceroni, U. Gadiraju, and M. Fisichella, “Justevents: A crowdsourced
corpus for event validation with strict temporal constraints,” in
Advances in Information Retrieval - 39th European Conference on IR
Research, ECIR 2017, Aberdeen, UK, April 8-13, 2017, Proceedings,
ser. Lecture Notes in Computer Science, J. M. Jose, C. Hauff,
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